طراحی مدل انتخاب فناوری مناسب (مورد مطالعه: شرکت گاز استان فارس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مدیریت کسب‌وکار، دانشکده اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز.

2 عضو هیئت‌علمی، دانشکده اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز.

3 کارشناس پژوهش، واحد پژوهش، شرکت گاز استان فارس، شیراز

چکیده

اگرچه فناوری یکی از اساسی‌ترین ارکان فعالیت هر سازمانی است، انتخاب فناوری مناسب همیشه یک تصمیم دشوار می‌باشد؛ بنابراین هدف پژوهش حاضر تدوین مدلی برای ارزیابی میزان مناسب‌بودن فناوری‌ها برای استفاده در شرکت گاز استان فارس است. روش پژوهش مورداستفاده، آمیخته کیفی-کمّی با هدف ابزارسازی و به‌کارگیری ابزار طراحی‌شده است. در این پژوهش، ابتدا با بررسی مطالعات داخلی و خارجی، شاخص‌های انتخاب فناوری استخراج، ارزیابی و پالایش شد. سپس شاخص‌های غیرضروری با روش نسبت روایی محتوا حذف و 33 شاخص باقیمانده در سه بُعد راهبردی، مالی و فنی دسته‌بندی شدند. نهایتاً با استفاده از تکنیک آر-سوارا، وزن شاخص‌های مذکور مشخص شد و اعتبار مدل با پرسش از خبرگان تضمین شد. در ادامه سه فناوری قابل‌جایگزینی مربوط به بازرسی و آزمون جوش‌های خطوط لوله، با استفاده از مدل طراحی‌شده مورد ارزیابی قرار گرفتند و امتیاز هریک با استفاده از مدل پیشنهادی، مشخص شد. نتایج این بخش نشان داد که مناسب‌ترین فناوری، فناوری فراصوتی با امتیاز میانگین 2/13 از 20 می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing Appropriate Technology Selection Model (Case study: Fars Province Gas Company)

نویسندگان [English]

  • Abbas Jafari 1
  • Seyed-Hadi Mirghaderi 2
  • Ali Naghi Mosleh Shirazi 2
  • Fatemeh Sadeghzadeh 3
1 MA Student in Business Management, Department of Management, Shiraz University, Shiraz, Iran.
2 Faculty Member, Department of Management, Shiraz University, Shiraz, Iran.
3 Research Department, Fars Province Gas Company, Shiraz, Iran
چکیده [English]

Technology is a vital part of operations in any organization; however, the selection of appropriate technology is a challenging decision. This paper aims to develop a model for assessing the level of appropriateness of technologies for users of the Fars Province Gas Company. To do this, a combination of qualitative and quantitative research methods was used to create and apply the necessary instrument. In this research, we first extracted technology selection criteria from national and international scientific documents. Secondly, the criteria were sifted, then the unnecessary criteria were removed using the content validity ratio method. Finally, the remained 33 criteria were classified into three categories: financial, strategic, and technological. To weigh the dimensions and criteria, the R-SWARA method was used, and it discovered that the technical dimension has the highest weight and encapsulates more criteria than other dimensions. The validity of the model was approved using experts’ ideas. Then, three alternative technologies for inspection and testing of the pipeline welding used by Fars Province Gas Company were evaluated using the designed model, and the rating of each technology was determined by the proposed model. The results reveal that the most appropriate technology is Ultrasonic Testing Technology, with a mean score of 13.2 out of 20.

کلیدواژه‌ها [English]

  • Technology Selection
  • Appropriate Technology
  • Gas Company
  • R-SWARA
 -         Adenuga, O. T., Mpofu, K., & Modise, K. R. (2020). An approach for enhancing optimal resource recovery from different classes of waste in South Africa: Selection of appropriate waste to energy technology. Sustainable Futures, 2, 100033. https://doi.org/10.1016/j.sftr.2020.100033
-         Ajalli, M., Jafarnejad, A. & Bitaraf, A. (2009). Introducing a unified model for identification and adoption an appropriate technology: Nooshin manufacturing firm [In Persian]. Journal of Knowledge and Technology, 1(1), 48-68. Retrieved from http://magiran.com/p798885
-         Akhundzadeh, M., Shirazi, B. & Soltanzadeh, J. (2015), Evaluation and selection of appropriate technology in pulp section using AHP method: Case study Mazandaran wood & paper industries [In Persian]. International Conference on Modern Research in Management & Industrial Engineering, IRIB International Conference Center, Tehran, Iran. Retrieved from https://civilica.com/doc/435110
-         Aliakbari Noori, F. & Shafiei Nikabadi, M. (2014) Justification and selection of advanced technologies: Application of hybrid MCDM approach based on FANP and FARAS [In Persian]. Journal of Technology Development Management, 2(3), 109-134. https://doi.org/10.22104/jtdm.2016.223
-         Almanasreh, E., Moles, R., & Chen, T. F. (2019). Evaluation of methods used for estimating content validity. Research in Social and Administrative Pharmacy, 15(2), 214-221. https://doi.org/10.1016/j.sapharm.2018.03.066
-         Ansari, M., & Zare, A. (2009). Determination of factors affecting the technology selecting and transferring: Case study of car body production line in Iran Khodro [In Persian]. Journal of Executive Management, 1(33), 37-56. http://jem.journals.umz.ac.ir/article_196.html
-         Bauer, A. M., & Brown, A. (2014). Quantitative assessment of appropriate technology. Procedia Engineering, 78, 345–358. https://doi.org/10.1016/j.proeng.2014.07.076
-         Berawi, M. A. (2018). The fourth industrial revolution: Managing technology development for competitiveness. International Journal of Technology, 9(1), 1-4. https://doi.org/10.14716/ijtech.v9i1.1504
-         Chuu, S. J. (2009). Selecting the advanced manufacturing technology using fuzzy multiple attributes group decision making with multiple fuzzy information. Computers & Industrial Engineering, 57(3), 1033–1042. https://doi.org/10.1016/j.cie.2009.04.011
-         Daim, T. U., & Intarode, N. (2009). A framework for technology assessment: Case of a Thai building material manufacturer. Energy for Sustainable Development, 13(4), 280–286. https://doi.org/10.1016/j.esd.2009.10.006
-         Daim, T., Yates, D., Peng, Y., Jimenez, B. (2009). Technology assessment for clean energy technologies: The case of the Pacific Northwest. Technology in Society, 31(3), 232–243. https://doi.org/10.1016/j.techsoc.2009.03.009
-         Ely, A., Van Zwanenberg, P., & Stirling, A. (2011). New models of technology assessment for development. STEPS, Brighton, UK. https://steps-centre.org/anewmanifesto/wp-content/uploads/technology_assessment.pdf
-         Farnoodi, S. (2009). Presenting a framework for evaluation of health technologies in health and medical system of Iran: Case Study of Robolens robot [In Persian]. Journal of Science & Technology Policy, 2(3), 75-86. http://jstp.nrisp.ac.ir/article_12790.html
-         Gregory, M. J. (1995). Technology management: A process approach.Proceedings of the Institution Mechanical Engineers, Part B: Journal of Engineering Manufacture, 209(5), 347-356. https://doi.org/10.1243/PIME_PROC_1995_209_094_02
-         Hung, C. Y., & Lee, W. Y. (2016). A proactive technology selection model for new technology: The case of 3D IC TSV. Technological Forecasting and Social Change, 103, 191–202. https://doi.org/10.1016/j.techfore.2015.11.009
-         Jokhu, P. D., & Kutay, C. (2020). Observations on appropriate technology application in indigenous community using system dynamics modelling. Sustainability, 12(6), 2245. https://doi.org/10.3390/su12062245
-         Jolly, D. R. (2012). Development of a two-dimensional scale for evaluating technologies in high-tech companies: An empirical examination. Journal of Engineering and Technology Management, 29(2), 307-329. https://doi.org/10.1016/j.jengtecman.2012.03.002
-         Kaplinsky, R. (2011). Schumacher meets Schumpeter: Appropriate technology below the radar. Research Policy, 40(2), 193–203. https://doi.org/10.1016/j.respol.2010.10.003
-         Kharat, M. G., Murthy, S., Kamble, S. J., Raut, R. D., Kamble, S. S., & Kharat, M. G. (2019). Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection, Technology in Society, 57, 20-29. https://doi.org/10.1016/j.techsoc.2018.12.005
-         Khodabandehloo, H. (2011) Providing a model for appropriate industrial technology selection from technologies introduced by facility applicants of Bank of Industry and Mine, [Unpublished master’s thesis, in Persian]. Payam Noor University (Shemiranat Branch).
-         Lan, P., & Young, S. (1996). International technology transfer examined at technology component level: A case study in China. Technovation, 16(6), 277–286. https://doi.org/10.1016/0166-4972(96)00005-3
-         Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563-575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
-         Lee, J., Kim, K., Shin, H., & Hwang, J. (2018). Acceptance factors of appropriate technology: Case of water purification systems in Binh Dinh, Vietnam. Sustainability, 10(7), 1-20. https://doi.org/10.3390/su10072255
-         Lee, S. L., Chen, P. C., Chan, W. C., & Hung, S. W. (2015). A three-stage decision-making model for selecting electric vehicle battery technology. Transportation Planning and Technology, 38(7), 761–776. https://doi.org/10.1080/03081060.2015.1059122
-         Ma, D., Chang, C. C., & Hung, S. W. (2013). The selection of technology for late-starters: A case study of the energy-smart photovoltaic industry. Economic Modelling, 35, 10-20. https://doi.org/10.1016/j.econmod.2013.06.030
-         Mohaghegh, M. & Shirazi, B. (2016). Prioritization of power distribution smart grid technologies based on the attractiveness criteria: Case study on Mazandaran power distribution company [In Persian]. Roshd–e-Fanavari Journal of Science & Technology Parks and Incubators, 12(48), 44-49.   http://roshdefanavari.ir/Article/13951006917524325
-         Nakhaeinejad, M. & Safari, M. (2019). Identification and ranking of technology risks in the field of natural gas energy distribution by the integrative approach of FMEA and TOPSIS: The Case of Chaharmahal and Bakhtiari Province Gas Company [In Persian]. Journal of Production and Operations Management, 10(2). 143-159. https://jpom.ui.ac.ir/article_24484.html
-         Patnaik, J., & Bhowmick, B. (2018). Appropriate Technology: Revisiting the Movement in Developing Countries for Sustainability. International Journal of Urban and Civil Engineering, 12(3), 308-312. https://doi.org/10.5281/zenodo.1316135
-         Patnaik, J., & Bhowmick, B. (2019). Revisiting appropriate technology with changing socio-technical landscape in emerging countries. Technology in Society, 57, 8-19. https://doi.org/10.1016/j.techsoc.2018.11.004
-         Pawlak, Z. (1998). Rough set theory and its applications to data analysis. Cybernetics and Systems, 29(7), 661-688. https://doi.org/10.1080/019697298125470
-         Pawlak, Z., Grzymala-Busse, J., Slowinski, R., & Ziarko, W. (1995). Rough sets. Communications of the ACM, 38(11), 88–95. https://doi.org/10.1145/219717.219791
-         Rais, Somantri, O., Afriliana, I., Budihartono, E., & Khambali, M. (2020). An optimized model for classification of appropriate technology products using neural networks and genetic algorithms. Journal of Physics: Conference Series, 1430, 012035. https://doi.org/10.1088/1742-6596/1430/1/012035
-         Ren, J., & Lützen, M. (2015). Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties. Transportation Research, 40, 43–60. https://doi.org/10.1016/j.trd.2015.07.012
-         Schumacher, E.F. (1973) Small is beautiful: Economics as if people mattered. HarperCollins.
-         Shen, Y. C., Lin, G. T. R., & Tzeng, G. H. (2011). Combined DEMATEL techniques with novel MCDM for the organic light emitting diode technology selection. Expert Systems with Applications, 38(3), 1468–1481. https://doi.org/10.1016/j.eswa.2010.07.056
-         Skowron, A. & Dutta, S. (2018). Rough sets: Past, present, and future. Natural Computing, 17(4), 855-876. https://doi.org/10.1007/s11047-018-9700-3
-         Torkkeli, M. & Tuominen, M. (2002). The contribution of technology selection to core competencies. International Journal of Production Economics, 77(3), 271-284. https://doi.org/10.1016/S0925-5273(01)00227-4
-         Wang, B., Song, J., Ren, J., Li, K., Duan, H., & Wang, X. (2019). Selecting sustainable energy conversion technologies for agricultural residues: A fuzzy AHP-VIKOR based prioritization from life cycle perspective. Resources, Conservation and Recycling, 142, 78–87. https://doi.org/10.1016/j.resconrec.2018.11.011
-         Wu, C., Yue, Y., Li, M. & Adjei, O. (2004). The rough set theory and applications. Engineering Computations, 21(5), 488-511. https://doi.org/10.1108/02644400410545092
-         Xu, Z. J., & Song, Y. K. (2011, September). Selection of appropriate technology based on Fuzzy Comprehensive Evaluation. In 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management (pp. 834-838). IEEE. https://doi.org/10.1109/ICIEEM.2011.6035288
-         Yasseri, S. (2012). Subsea technologies selection using analytic hierarchy process. Underwater Technology, 30(3), 151–164.https://doi.org/10.3723/ut.30.151
-         Yoon, B., Shin, J., & Lee, S. (2018). Technology assessment model for sustainable development of LNG terminals. Journal of Cleaner Production, 172, 927–937. https://doi.org/10.1016/j.jclepro.2017.10.187
-         Zall Kusek, J., & Rist, R. (2004). Ten steps to a results-based monitoring and evaluation system: A handbook for development practitioners. World Bank Publications. https://doi.org/10.1596/0-8213-5823-5
-         Zavadskas, E. K., Stevic, Z. Tanackov, I. Prentkovskis, O. (2018). A novel multicriteria approach  rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics. Studies in Informatics and Control, 27(1), 97-106. https://doi.org/10.24846/v27i1y201810
-         Zelenika (2011). Barriers to appropriate technology growth in sustainable development. Journal of Sustainable Development, 4(6), 12-22. https://doi.org/10.5539/jsd.v4n6p12
-        Zhou, J., Jiao, H., & Li, J. (2017). Providing appropriate technology for emerging markets: Case study on China’s solar thermal industry. Sustainability, 9(2), 1-21. https://doi.org/10.3390/su9020178
-         Zhu, G.-N., Hu, J., Qi, J., Gu, C.-C., & Peng, Y.-H. (2015). An integrated AHP and VIKOR for design concept evaluation based on rough number. Advanced Engineering Informatics, 29(3), 408–418. https://doi.org/10.1016/j.aei.2015.01.010