شناسایی و بررسی موانع گذار اجتماعی- فنی به سیستم های خورشیدی فتوولتاییک با تاکید بر رژیم برق فسیلی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مدیریت، دانشکده علوم اقتصادی و اداری، دانشگاه مازندران

2 هیات علمی گروه مدیریت بازرگانی دانشگاه مازندران

3 هیات علمی سازمان پژوهشهای علمی و صنعتی ایران

4 هیات علمی گروه مدیریت صنعتی دانشگاه مازندران

چکیده

با وجود پتانسیل بسیار بالای ایران در تولید برق از سیستمهای خورشیدی فتوولتاییک، انتشار این سیستم‌ها بسیار کند است. پژوهش حاضر که در بازه ی زمانی1397-1395صورت گرفته، با ترکیب رویکردهای چند سطحی و نظام نوآوری فناورانه، در پی شناسایی و بررسی موانعی برآمده که رژیم اجتماعی – فنی برق فسیلی ایران در بستر تاریخی و فرهنگی خود موجبات عدم گذار به سیستم های خورشیدی فتوولتاییک را فراهم آورده اند. بدین منظور، در مرحله نخست، ابتدا پس از مرور ادبیات، مصاحبه با خبرگان و سپس تحلیل مضمون داده های حاصله، موانع گذار با تاکید بر رژیم شناسایی شدند و سپس از تکنیک دلفی فازی جهت آزمون نتایج و خبره سنجی استفاده گردید که نهایتا 10 مانع در 4 دسته‌ی اقتصادی، نهادی، سیاسی و فنی طبقه بندی شدند که از جمله‌ی آنها می‌توان به کنترل بازار توسط رژیم حاکم، بکارگیری استراتژی های گفتمانی ، تنظیم مقررات و استانداردها و ... اشاره کرد. در مرحله‌ی دوم نیز مصاحبه با خبرگان و استفاده از روش تحلیل و توسعه گزینه‌های استراتژیک (سودا) مشخص کرد که این موانع بیشترین تاثیر را بر کارکردهای مشروعیت‌بخشی، تخصیص منابع و جهت دهی به سیستم داشته اند. در نهایت نیز تعدادی سازوکار برای غلبه بر این موانع پیشنهاد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Identification and Analysis of Social-Technical Transition Barriers to Photovoltaic Solar Systems Focusing on Fossil Fuel Regime

نویسندگان [English]

  • zohreh rahimi rad 1
  • mahmood yahyazadefar 2
  • tahereh miremadi 3
  • mehrdad madhoshi 4
1 Department of Business Economics,University of Mazandaran
2 mazandaran university
3 Irost
4 mazandaran university
چکیده [English]



Despite the enormous potentials of Iran to generate electricity from photovoltaic solar systems, diffusion of these systems is very slow. The present study, which was performed during the period of 2016-2018 by combining multi-level approaches and technological innovation system, seeks to identify and investigate the barriers that Iran's fossil-fuel socio-technical regime has created in its historical and cultural context caused non-transition to photovoltaic solar systems. For this purpose, firstly, after reviewing the literature, interviewing the experts and thematic analysis, transition barriers with emphasis on the regime were identified and then Fuzzy Delphi technique was used to test the results. Eventually, 10 obstacles were categorized into four economic, institutional, political and technical categories, including market control by the ruling regime, the use of discursive strategies, regulation and standards in stabilizing the ruling regime, massive investment in oil and gas distribution and extraction. In the second phase, interviews with experts and the use of the Strategic Options Development and Analysis (SODA) method indicated that these barriers had the greatest impact on the functions of resource allocation, legitimization, and system orientation. Finally, some mechanisms have been proposed to overcome these obstacles

 


 


.

کلیدواژه‌ها [English]

  • : Socio-Technical Regime
  • niche
  • Technological Innovation System
  • solar photovoltaic systems
  • fossil fuel
-         اردکانیان، رضا،1397، ظرفیت نیروگاه‌های تجدید پذیر ایران به ۴۰۰۰ مگاوات می‌رسد‌. دسترسی در 25/5/1397 از وب‌سایت: goo.gl/aUQjCq

-         آذر، عادل، نجفی توانا، سعید، قربانی، حسین،1394، نگاشت نقشه پایش فرایند کیفیت اقلام آماری مرکز آمار ایران با رویکرد تحلیل و توسعه گزینه‌های استراتژیک (سودا). پژوهش‌های مدیریت در ایران، سال نوزدهم، شماره 4، صص ۱-۲۰.

-         میرعمادی، طاهره. رحیمی راد، زهره، 1396، آینده‌پژوهی سیاست‌های ایران در بیست سال آینده. معاونت ‌برنامه‌ریزی ‌و ‌نظارت ‌راهبردی ‌معاونت ‌علمی ‌و ‌فناوری‌ ریاست ‌جمهوری.

-         میرعمادی، طاهره. (1391). مدارهای توسعه‌نیافتگی و تأثیر آن‌ها بر نظام ملی نوآوری در ایران. فصلنامه سیاست علم و فناوری، 5(1), 17-30.

-          Avelino, F., & Rotmans, J. (2009). Power in transition: an interdisciplinary framework to study power in relation to structural change. European journal of social theory12(4), 543-569.

-          Baltar, F., & Brunet, I. (2012). Social research 2.0: virtual snowball sampling method using Facebook. Internet Research22(1), 57-74.

-          Bergek, A., Hekkert, M., Jacobsson, S., Markard, J., Sandén, B., & Truffer, B. (2015). Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environmental Innovation and Societal Transitions, 16, 51-64.

-          Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology3(2), 77-101.

-          Cavalli-Sforza, V., & Ortolano, L. (1984). Delphi forecasts of land use: Transportation interactions. Journal of Transportation Engineering110(3), 324-339.

-          Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European journal of operational research142(1), 174-186.‏

-          Coenen, L., & López, F. (2010). Comparing systems approaches to innovation and technological change for sustainable and competitive economies: an explorative study into conceptual commonalities, differences and complementarities. Journal of Cleaner Production, 18(12), 1149-1160.

-          Edquist, C., 2004. Reflections on the systems of innovation approach. Science and public policy31(6), pp.485-489.

-          Edsand, H. E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society49, 1-15.

-          EIA, U. (2013). Annual energy outlook 2013. US Energy Information Administration, Washington, DC, 60-62.

-          Farla, J., Markard, J., Raven, R., & Coenen, L. (2012). Sustainability transitions in the making: A closer look at actors, strategies and resources. Technological forecasting and social change79(6), 991-998.

-          Geels, F. (2014). Regime resistance against low-carbon transitions: Introducing politics and power into the multi-level perspective. Theory, Culture & Society, 31(5), 21-40.

-          Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research policy31(8-9), 1257-1274.

-          Geels, F. W. (2005). The dynamics of transitions in socio-technical systems: a multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technology analysis & strategic

-          Geels, F. W., & Schot, J. (2010). The dynamics of transitions: a socio-technical perspective.

-          Geels, F. W., Hekkert, M. P., & Jacobsson, S. (2008). The dynamics of sustainable innovation journeys.

-          Geels, F., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36(3), 399–417.

-          Grin, J. (2010). Understanding transitions from a governance perspective. Transitions to sustainable development: New directions in the study of long term transformative change, 221-319.

-          Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of qualitative research2(163-194), 105.

-          Hafeznia, H., Aslani, A., Anwar, S., & Yousefjamali, M. (2017). Analysis of the effectiveness of national renewable energy policies: A case of photovoltaic policies. Renewable and Sustainable Energy Reviews79, 669-680.

-          Hekkert, M. P., Suurs, R. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological forecasting and social change74(4), 413-432.

-          Hess, D. J. (2016). The politics of niche-regime conflicts: distributed solar energy in the United States. Environmental Innovation and Societal Transitions, 19, 42-50.

-          Hoppmann, J., Huenteler, J., & Girod, B. (2014). Compulsive policy-making—the evolution of the German feed-in tariff system for solar photovoltaic power. Research policy43(8), 1422-1441.

-          Hsu, T. H., & Yang, T. H. (2000). Application of fuzzy analytic hierarchy process in the selection of advertising media. Journal of Management and Systems7(1), 19-39.

-          Iizuka, M. (2015). Diverse and uneven pathways towards transition to low carbon development: the case of solar PV technology in China. Innovation and Development5(2), 241-261.

-          Ishikawa, A. (1993, January). The new fuzzy Delphi methods: economization of GDS (group decision support). In System Sciences, 1993, Proceeding of the Twenty-Sixth Hawaii International Conference on (Vol. 4, pp. 255-264). IEEE.

-          Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28(9), 625–940.

-          Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technology analysis & strategic management10(2), 175-198.‏

-          Kern, F. (2011). Ideas, institutions, and interests: explaining policy divergence in fostering ‘system innovations’ towards sustainability. Environment and Planning C: Government and Policy29(6), 1116-1134.

-          Levy, D. L., & Newell, P. J. (2002). Business strategy and international environmental governance: Toward a neo-Gramscian synthesis. Global Environmental Politics2(4), 84-101.

-          Loorbach, D. (2010). Transition management for sustainable development: a prescriptive, complexity‐based governance framework. Governance23(1), 161-183.‏

-          Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research policy, 37(4), 596-615.

-          Murray, T. J., Pipino, L. L., & van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management5(1), 76-80.

-          Nasiri, M., Khorshid-Doust, R. R., & Moghaddam, N. B. (2013). Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands. Energy policy63, 588-598.

-          Negro, S. O., Alkemade, F., & Hekkert, M. P. (2012). Why does renewable energy diffuse so slowly? A review of innovation system problems. Renewable and Sustainable Energy Reviews16(6), 3836-3846.

-          Nejat, P., Morsoni, A. K., Jomehzadeh, F., Behzad, H., Vesali, M. S., & Majid, M. A. (2013). Iran's achievements in renewable energy during fourth development program in comparison with global trend. Renewable and Sustainable Energy Reviews22, 561-570.‏

-          Phillips, R. (2000). New applications for the Delphi technique. ANNUAL-SAN DIEGO-PFEIFFER AND COMPANY, 2, 191-196.

-          Radosevic, S. (1998). Defining systems of innovation: a methodological discussion. Technology in Society20(1), 75-86.

-          Ratinen, M., & Lund, P. D. (2017). When regime changes slow down niche development: the example of wind energy business in Finland. International Journal of Research, Innovation and Commercialisation1(1), 41-56.

-          Raven, R. P. J. M., & Geels, F. W. (2010). Socio-cognitive evolution in niche development: Comparative analysis of biogas development in Denmark and the Netherlands (1973–2004). Technovation30(2), 87-99.

-          Rip, A., & Kemp, R. (1998). Technological change. Human choice and climate change2, 327-399.

-          Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: transition management in public policy. Foresight3(1), 15-31.‏

-          Smith, A. (2007). Translating sustainabilities between green niches and socio-technical regimes. Technology analysis & strategic management19(4), 427-450.

-          Smith, A., Stirling, A., & Berkhout, F. (2005). The governance of sustainable socio-technical transitions. Research policy, 34(10), 1491-1510.

-          Smith, A., Voß, J. P., & Grin, J. (2010). Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Research policy39(4), 435-448.

-          Carlsson, B., & Stankiewicz, R. (1991). On the nature, function and composition of technological systems. Journal of evolutionary economics, 1(2), 93-118.

-          Suurs, R. A. (2009). Motors of sustainable innovation: Towards a theory on the dynamics of technological innovation systems. Utrecht University.

-          Suurs, R. A., & Hekkert, M. P. (2009). Cumulative causation in the formation of a technological innovation system: The case of biofuels in the Netherlands. Technological Forecasting and Social Change76(8), 1003-1020.

-          Voss, J., Smith, A., & Grin, J. (2009). Designing long-term policy: rethinking transition management. Policy sciences, 42(4), 275-302.

-          Walrave, B., & Raven, R. (2016). Modelling the dynamics of technological innovation systems. Research Policy45(9), 1833-1844.

-          Walz, R., Köhler, J. H., & Lerch, C. (2016). Towards modelling of innovation systems: An integrated TIS-MLP approach for wind turbines (No. 50). Fraunhofer ISI Discussion Papers Innovation Systems and Policy Analysis.‏

-          Wieczorek, A. J. (2017). Sustainability transitions in developing countries: Major insights and their implications for research and policy. Environmental Science & Policy84, 204-216.

-          Zhang, S., Andrews-Speed, P., & Ji, M. (2014). The erratic path of the low-carbon transition in China: Evolution of solar PV policy. Energy Policy, 67, 903-912.

-          Zimmerman, M. A., & Zeitz, G. J. (2002). Beyond survival: Achieving new venture growth by building legitimacy. Academy of management review27(3), 414-431.