انتخاب روش مناسب برای پیش ‏بینی تکنولوژی موتور هواپیمای ایران 140

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی گروه مدیریت تکنولوژی؛ دانشکده مدیریت دانشگاه تهران؛ تهران؛ ایران

2 کارشناسی ارشد مدیریت تکنولوژی، دانشگاه تهران

3 کارشناسی ارشد MBA، دانشگاه تهران

4 کارشناس ارشد مدیریت تکنولوژی، دانشگاه تهران

چکیده

همزمان با افزایش سرعت پیشرفت‌های تکنولوژیک و تغییرات محیطی، بنگاه‌های مبتنی بر تکنولوژی، بیش از پیش ضرورت پیش‌بینی را درک می نمایند. از آنجا که به دلیل شرایط تکنولوژی و معیارهای مورد نظر، امکان استفاده همزمان از تمام روش‏های پیش‏بینی تکنولوژی میسر نیست، لذا نیاز است تا از بین روش‏های موجود روشی کارا و اثربخش برای پیش‏بینی تکنولوژی خاص مدنظر قرار گیرد. نظر به تعدد معیارهای موثر بر این انتخاب و تفاوت میزان اهمیت این معیارها در انتخاب روش مناسب پیش‏بینی تکنولوژی، استفاده از روش‏های تصمیم‏گیری چندشاخصه مورد توجه صاحب‏نظران این حوزه قرار گرفته است. در همین راستا مقاله کنونی با هدف ارایه چارچوبی جهت انتخاب روش مناسب پیش‌بینی تکنولوژی تدوین شده است. بدین منظور، در ابتدا با بررسی پیشینه، شاخص‌های مناسب برای انتخاب روش پیش‌بینی تکنولوژی، استخراج شده است. پس از نهایی شدن معیارها با کمک اعضای کمیته مرتبط و با بهره‏گیری از روش‏های تصمیم‏گیری چندشاخصه، وزن هر یک از معیارها محاسبه شده و در ادامه روش‏های پیش‌بینی شناسایی شده در نظر گرفته شده برای مورد مطالعاتی موتور هواپیما، ارزیابی و اولویت‌بندی شده اند. نتایج حاکی از آن است که بر اساس نظر خبرگان، روش پیش‌بینی دلفی بهترین روش برای پیش‌بینی تکنولوژی در این حوزه می‏باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A hybrid approach for selecting appropriate technological forecasting technique

نویسندگان [English]

  • Jalil Heidaryd Dahooie 1
  • navid mohammadi 2
  • AmirSalar Vanaki 3
  • sina ghaffari 4
1 Assistant professor, Technology Management, Faculty of management, university of Tehran, Tehran, Iran
3 Master of MBA, university of tehran
4 Master of management of technology, university of tehran
چکیده [English]

As technological advances and environmental changes accelerate, technology-based corporations increasingly understand the need to forecast and comprehend future developments in the environment. Due to the technological conditions and desired criteria, it is not possible to use all methods of technology forecasting simultaneously. Therefore, it is necessary to select an effective and efficient method for forecasting specific technology. Considering the multiplicity of effective criteria on this choice and the difference in the importance between these criteria for choosing the appropriate technology forecasting method, the use of multi-criteria decision-making methods has been considered by the experts of this field. In this regard, this paper aims to provide a framework for selecting the appropriate technology forecasting method. For this purpose, firstly, by review the literature, the appropriate indicators for choosing the technology forecasting method were extracted. After the criteria were finalized with the help of the members of the relevant committee and using multi-criteria decision-making methods, the weight of each criterion was calculated and then the forecasting methods considered for aircraft engine were evaluated and prioritized. The results indicate that the Delphi forecasting method can be used as the best method for technology forecasting in this area.

کلیدواژه‌ها [English]

  • Technological Forecasting
  • SWARA
  • Fuzzy MULTIMOORA
  • Aircraft Engine
-       Acar, Y., & Gardner, E. (2012). Forecasting method selection in a global supply chain. International Journal of Forecasting, 28(4), 842-848.

-       Akkaya, G., Turanoğlu, B., & Öztaş, S. (2015). An integrated fuzzy AHP and fuzzy MOORA approach to the problem of industrial engineering sector choosing, Expert Systems with Applications, 42(24), 9565-9573.

-       Akyuz, E., & Celik, E. (n.d.).(2015) A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. Journal of Loss Prevention in the Process Industries, 38, 243-253.

-       Alimardani, M., Zolfani, S. H., Aghdaie, M. H., & Tamošaitienė, J. (2013). A Novel Hybrid SWARA and VIKOR Methodology for Supplier Selection in an Agile Environment. Technological and Economic Development of Economy, 19(3), 533–548.

-       Asmus, J., Bonner, C., Esterhay, D., Lechner, A., & Rentfrow, C. (Retrieved April 2005). Instructional design technology trend analysis. 20.

-       Baležentis, A. B. (2012). Personnel selection based on computing with words and fuzzy MULTIMOORA. Expert Systems with applications, 39(9), 7961-7967.

-       Baležentis, T., Misiunas, A., & Baležentis, A. (2013). Efficiency and productivity change across the economic sectors in Lithuania (2000-2010): the dea-MULTIMOORA approach. Technological and Economic Development of Economy, 19(1), 191-213.

-       Bartusková, T., Papalová, M., & Kresta, A. (2015). Selection of a Forecasting Method: Analytical Hierarchy Process Approach. Scientific Papers of the University of Pardubice, 17.

-       Brauers, W. K., & Zavadskas, E. (2012). Robustness of MULTIMOORA: A method for multi-objective optimization. Informatica, 23(1), 1-25.

-       Brauers, W. K., & Zavadskas, E. K. (2006). The MOORA method and its application to privatization in a transition economy. Control and Cybernetics, 35(2), 445–469.

-       Brauers, W. K., & Zavadskas, E. K. (2012). A multi-objective decision support system for project selection with an application for the Tunisian textile industry. E+ M Ekonomie a Management, 1, 28.

-       Chen, Y. H., Chen, C. Y., & Lee, S. C. (2011). Technology forecasting and patent strategy of hydrogen energy and fuel cell technologies. International Journal of Hydrogen Energy, 36(12), 6957-6969.

-       Cheng, A. C., Chen, C. J., & Chen, C. Y. (2008). A fuzzy multiple criteria comparison of technology forecasting methods for predicting the new materials development. Technological Forecasting and Social Change 75.1, 75(1), 131-141.

-       Cho, Y., & Daim, T. (2013). Technology forecasting methods. In Research and Technology Management in the Electricity Industry. Springer London.

-       Chong, S., Chen, Z., Huiqin, F., & Jian, H. (2002). Analysis of development trend of computer monitoring and control technology for hydropower plants. Dam Observation and Geotechnical Tests, 6.

-       Christensen, C. (2013). The innovator's dilemma: when new technologies cause great firms to fail. Harvard Business Review Press.

-       Chu, C.-H., & Widjaja, D. (1994). Neural network system for forecasting method selection. Decision Support Systems, 12(1), 13-24.

-       Coates, V., Farooque, M., Klavans, R., Lapid, K., Linstone, H. A., Pistorius, C., & Porter, A. L. (2001). On the future of technological forecasting. Technological forecasting and social change, 67(1), 1-17.

-       Dehnavi, A., Aghdam, I. N., Pradhan, B., & Varzandeh, M. H. (2015). A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena, 135, 122-148.

-       Demras, E., & Anagun, A. (2006). Forecasting method selection for capacity planning in service systems. ESK ŞEH R OSMANGAZ ÜN VERS TES, 135.

-       Eto, H. (2003). The suitability of technology forecasting/foresight methods for decision systems and strategy: A Japanese view. Technological Forecasting and Social Change, 70(3), 231-249.

-       Flores, B., Olson, D., & Pearce, S. (1993). Use of cost and accuracy measures in forecasting method selection: a physical distribution example. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 31.1, 31(1), 139-160.

-       Gabor, D. (1963). Inventing the Future, Alfred A. Secker & Warburg, 663.

-       Gilmer, G. H., Huang, H., de la Rubia, T. D., Dalla Torre, J., & Baumann, F. (2000). Lattice Monte Carlo models of thin film deposition. Thin Solid Films, 365(2), 189-200.

-       Gomm, R., Hammersley, M., & Foster, P. (2000). Case study method: Key issues, key texts. Sage.

-       Hashemkhani Zolfani, S., & Bahrami, M. (2014). Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technological and Economic Development of Economy, 20(3), 534-553.

-       Hirsch, R. L. (1986). Reorienting an industrial research laboratory. Research Management, 29(1), 26-30.

-       İNtepe, G., Bozdag, E., & Koc, T. (2013). The selection of technology forecasting method using a multi-criteria interval-valued intuitionistic fuzzy group decision making approach. Computers & Industrial Engineering, 65(2), 277-285.

-       Karande, P., & Chakraborty, S. (2012). Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection. Materials & Design, 37, 317-324.

-       Keršulienė, V., & Turskis, Z. (2011). Integrated fuzzy multiple criteria decision making model for architect selection. Technological and Economic Development of Economy, 17(4), 645–666.

-       Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of Rational Dispute Resolution Method by Applying New Step-wise Weight Assessment Ratio Analysis (SWARA). Journal of Business Economics and Management, 11(2), 243-258.

-       Kohlbeck, M. (2005). Reporting earnings at summer Technology-A capstone case involving intermediate Accounting Topics. Issues in Accounting Education Teaching Notes, 20(2), 35-46.

-       Kumar, S., & Hsu, C. (1988). An expert system framework for forecasting method selection." System Sciences, 1988. Vol. III. Decision Support and Knowledge Based Systems Track. In System Sciences, 1988. Vol. III. Decision Support and Knowledge Based Systems Track, Proceedings of the Twenty-First Annual Hawaii International Conference on (Vol. 3, pp. 86-95). IEEE.

-       Lee, S., Kim, S., Sohn, E., & Kang, J. (2003). Technology trend analysis of chitosan. Journal of Chitin and Chitosan, 8(4), 193-201.

-       Levary, R., & Han, D. (1995). Choosing a technological forecasting method. INDUSTRIAL MANAGEMENT-CHICAGO THEN ATLANTA, 37, 14.

-       Linstone, H. A., & Turoff, M. (. (1975). The Delphi method: Techniques and applications (Vol. 29). Reading, MA: Addison-Wesley.

-       Liu, H. C., You, J. X., Lu, C., & Chen, Y. Z. (2015). Evaluating health-care waste treatment technologies using a hybrid multi-criteria decision making model. Renewable and Sustainable Energy Reviews, 41, 932-942.

-       Magruk, A. (2011). Innovative classification of technology foresight methods. Technological and Economic Development of Economy, 17(4), 700-715.

-       Martin, B. (2010). The origins of the concept of ‘foresight’ in science and technology: An insider's perspective. Technological Forecasting and Social Change, 77(9), 1438-1447.

-       Martino, J. (1993). Technological forecasting for decision making. McGraw-Hill, Inc.

-       Meade, N., & Islam, T. (1998). Technological forecasting—Model selection, model stability, and combining models. Management Science, 44(8), 1115-1130.

-       Miller, P., & Swinehart, K. (2010). Technological forecasting: a strategic imperative. JGBM, 6(2), 1-5.

-       Mishra, S., & et al. (2002). Matching of technological forecasting technique to a technology. Technological Forecasting and Social Change 69.1.

-       Mishra, S., Deshmukh, S. G., & & Vrat, P. (2002). Matching of technological forecasting technique to a technology. Technological Forecasting and Social Change, 69(1), 1-27.

-       Morlidge, S., & Player, S. (2010). Future ready: How to master business forecasting. John Wiley & Sons.

-       Nute, D., Mann, R., & Brewer, B. (1988). Using defeasible logic to control selection of a business forecasting method. In System Sciences, 1988. Vol. III. Decision Support and Knowledge Based Systems Track, Proceedings of the Twenty-First Annual Hawaii International Conference on (Vol. 3, pp. 437-444). IEEE.

-       Popper, R. (2008). The handbook of technology foresight: concepts and practice. Edward Elgar Publishing.

-       Porter, A., & Xu, H. (1990). Cross-impact analysis. Project Appraisal, 5(3), 186-188.

-       Reger, G. (2001). Technology foresight in companies: from an indicator to a network and process perspective. Technology Analysis & Strategic Management, 13(4), 533-553.

-       Roberts, E. B. (1969). Exploratory and normative technological forecasting: a critical appraisal. Technological Forecasting, 1(2), 113-127.

-       Salo, A., Gustafsson, T., & Ramanathan, R. (2003). Multicriteria methods for technology foresight. Journal of Forecasting, 22(2-3), 235-255.

-       Sarfaraz, H. Z., Zavadskas, E. K., & Turskis, Z. (2013). Design of Products with Both International and Local Perspectives based on Yin-Yang Balance Theory and Swara Method. Economic Research, 26(2), 451-466.

-       Schnaars, S. (2009). Forecasting the future of technology by analogy—an evaluation of two prominent cases from the 20th century. Technology in Society, 31(2), 187-195.

-       Schoemaker, P. J. (1995). Scenario planning: a tool for strategic thinking. Sloan management review, 36(2), 25.

-       Slocum, M., & Lundberg, C. (2001). Technology forecasting: from emotional to empirical. Creativity and Innovation Management, 10(2), 139-152.

-       Soy, S. (2015). The case study as a research method.

-       Stout, D. (1995). Technology foresight–a view from the front. Business Strategy Review, 6(4), 1-16.

-       Su, C.-H., & Cheng, C.-H. (2016). A hybrid fuzzy time series model based on ANFIS and integrated nonlinear feature selection method for forecasting stock. Neurocomputing, 205, 264-273.

-       Swager, W. L. (1973). Technological forecasting in planning: A method of using relevance trees. Business Horizons, 16(1), 37-44.

-       Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing & Management, 43(5), 1216-1247.

-       Turoff, M. (1972). An alternative approach to cross impact analysis. Technological forecasting and social change, 3, 309-339.

-       ULUKÖY, M., & VATANSEVER, K. (2013). Kurumsal Kaynak Planlamasi Sistemlerinin Bulanik AHP ve Bulanik MOORA Yöntemleriyle Seçimi: Üretim Sektöründe Bir Uygulama. Celal Bayar Üniversitesi Sosyal Bilimler Dergisi, 11(2), 274-293.

-       Vanston, J. H. (2003). Better forecasts, better plans, better results. Research-Technology Management, 46(1), 47-58.

-       Wissema, J. G. (1976). Morphological analysis: its application to a company TF investigation. Futures, 8(2), 146-153.

-       Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

-       Zolfani, S. H., Aghdaie, M. H., Derakhti, A., Zavadskas, K. E., & Varzandeh, M. H. (2013). Decision making on business issues with foresight perspective; an application of new hybrid MCDM model in shopping mall locating. Expert Systems with Applications, 40(17), 7111–7121.