کاربست تحلیل مضمون در شناسایی عناصر مدل نوآوری محصولات و سیستم‌های پیچیده در صنعت نیروگاه های مجازی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مدیریت و حسابداری دانشگاه آزاد تهران جنوب

2 عضو هیات علمی دانشگاه مالک اشتر

3 هیئت علمی دانشکده حسابداری و مدیریت دانشگاه علامه طباطبائی

چکیده

نیروگاه برق مجازی یک مفهوم جدید است و مفهوم اصلی آن بر پایه ژنراتورهای پراکنده‌ای می‌باشد که به هم متصل بوده و از طریق یک واحد کنترلی بهره گیرنده از ساختار تکنولوژی ارتباطی اطلاعاتی کنترل و نظارت می‌گردند. هدف از مطالعه حاضر شناسایی عناصر نوآوری محصولات برای صنعت نیروگاه‌های مجازی است. ابزار گردآوری داده‌ها مصاحبه و شیوه تجریه و تحلیل داده‌ها استفاده از روش تحلیل تماتیک (TA) بود. حجم نمونه پژوهش بر اساس نمونه‌گیری نظری و دستیابی به اشباع نظری تعیین شد و در نهایت پس از مصاحبه با 12 نفر از خبرگان اشباع نظری حاصل شد. تحلیل مصاحبه‌های انجام شده 77 کد مفهومی اولیه را آشکار کرده است. این کدهای مفهومی اولیه در مراحل بعد تحلیل شده و با انتزاع مفهومی از این کدها؛ تم های اولیه و تم های محوری تشکیل دهنده عناصر مدل پژوهش شکل گرفته است. سه تم اصلی یا مقوله محوری آشکار شده در داده ها شامل توانمندی هاب، ساختار شبکه و هماهنگی شبکه بود. در بحث توانمندی هاب چهار عنصر، هماهنگی شبکه هفت عنصر و ساختار شبکه شامل چهار عنصر می باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating product innovation model components and complex systems in the virtual power plant industry using content analysis

نویسندگان [English]

  • Farid Kabir 1
  • Manouchehr Manteghi 2
  • Mohammad Naghizadeh 3
1 Islamic Azad University.South Tehran Branch.Faculty of Management and Accounting
2 Faculty member of Malek Ashtar University
3 Allameh Tabataba'i University
چکیده [English]

A virtual power plant is a new concept. Its central concept is based on distributed generators connected to each other and monitored through a control unit using the structure of information and communication technology. This study aims to identify the components of product innovation for the virtual power plant industry. The data collection tool was an interview, and the data analysis method was thematic analysis (TA). The sample size for the study was selected based on theoretical sampling and saturation, and eventually, it was attained via interviews with 12 experts. Interview analysis uncovered 77 fundamental conceptual codes. These are analyzed in later stages and, by their conceptual abstraction, the primary themes and central themes that make up the components, the research model is formed. The three main themes identified in the data were hub capability, network structure, and network coordination. The hub capability, network coordination, and network structure include four, seven, and four components, respectively.

کلیدواژه‌ها [English]

  • virtual power plant
  • innovation network
  • complex systems
Ahrweiler, P., & Keane, M. T. (2013). Innovation networks. Mind & Society12(1), 73-90. https://doi.org/10.1007/s11299-013-0123-7
Ahuja, G. (2000). Collaboration Networks, Structural Holes, and Innovation:A LongitudinaSl tudy. Administrative science quarterly, 45(3), 425-455. https://doi.org/10.2307/2667105
Bignucolo, F., Caldon, R., Prandoni, V., Spelta, S., & Vezzola, M. (2006, September). The voltage control on MV distribution networks with aggregated DG units (VPP). In Proceedings of the 41st International Universities Power Engineering Conference (Vol. 1, pp. 187-192). IEEE. DOI:10.1109/UPEC.2006.367741
Corsaro, D., Cantù, C., & Tunisini, A. (2012). Actors' heterogeneity in innovation networks. Industrial Marketing Management41(5), 780-789. http://dx.doi.org/10.1016/j.indmarman.2012.06.005
Dhanaraj, C., & Parkhe, A. (2006). Orchestrating innovation networks. Academy of management review31(3), 659-669. https://doi.org/10.5465/amr.2006.21318923
Dodgson, M., & Bessant, J. R. (1996). Effective innovation policy : a new approach. International Thomson Business Press. dx.doi.org/10.1016/j.respol.2010.10.013
El Bakari, K., & Kling, W. L. (2010, October). Virtual power plants: An answer to increasing distributed generation. In 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe) (pp. 1-6). IEEE. https://doi.org/10.1109/ISGTEUROPE.2010.5638984
Elsayed, K., & Lacor, C. (2013). CFD modeling and multi-objective optimization of cyclone geometry using desirability function, artificial neural networks and genetic algorithms. Applied Mathematical Modelling37(8), 5680-5704. https://doi.org/10.1016/j.apm.2012.11.010
Faraz, R., Mehraban, M.S., & Hoshdarpour, R. (2015). Investigating smart distribution networks and using its boards in smart power systems. International conference on research in science and technology. [in Persian]. https://civilica.com/doc/446523/
Ghavidel, S., Li, L., Aghaei, J., Yu, T., & Zhu, J. (2016, September). A review on the virtual power plant: Components and operation systems. In 2016 IEEE international conference on power system technology (POWERCON) (pp. 1-6). IEEE. http://dx.doi.org/10.1109/POWERCON.2016.7754037
Hernández, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., ... & Cook, D. (2013). A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine, 51(1), 106-113. http://dx.doi.org/10.1109/MCOM.2013.6400446
Hobday, M. (2000). The project-based organisation: an ideal form for managing complex products and systems? Research Policy, 29(7–8), 871–893. https://doi.org/10.1016/S0048- 7333(00)00110-4. https://doi.org/10.1016/S0048-7333(00)00110-4
Hobday, M., Rush, H., & Tidd, J. (2000). Innovation in complex products and system. Research Policy, 29(7-8), 793-804. http://dx.doi.org/10.1016/S0048-7333(00)00105-0
Igel, B., & Wei, Z. (2002). A framework to analyse the competence to innovate complex product systems in the stored program control switchboard industry. International Journal of Entrepreneurship and Innovation Management, 2(6), 537-556. http://dx.doi.org/10.1504/IJEIM.2002.000500
Leven, P., Holmströma, J., & Mathiassen, L. (2014). Managing research and innovation networks: Evidence from agovernment sponsored cross-industry program. Research Policy, 43(1), 156-168. https://doi.org/10.1016/j.respol.2013.08.004
Lin, J., Zhang, S., Yang, B., Li, W., & Yi, Y. (2021, August). Customer-side Energy Management Considering the Availability of Renewable Virtual Power Plants. In The Sixth International Conference on Information Management and Technology (pp. 1-5). http://dx.doi.org/10.1145/3465631.3465997
Lombardi, P., Powalko, M., & Rudion, K. (2009, July). Optimal operation of a virtual power plant. In 2009 IEEE Power & Energy Society General Meeting (pp. 1-6). IEEE. http://dx.doi.org/10.1109/PES.2009.5275995
Mahmood, A., Butt, A. R., Mussadiq, U., Nawaz, R., Zafar, R., & Razzaq, S. (2017, April). Energy sharing and management for prosumers in smart grid with integration of storage system. In 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG) (pp. 153-156). IEEE. http://dx.doi.org/10.1109/SGCF.2017.7947623
Mahmud, K., Khan, B., Ravishankar, J., Ahmadi, A., & Siano, P. (2020). An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renewable and Sustainable Energy Reviews127, 109840. http://dx.doi.org/10.1016/j.rser.2020.109840
Mohajer, A., and Mohammadi, P. (2014). Distributed generation and virtual power plants. National Conference of New Researches in Science and Technology. [in Persian].https://www.sid.ir/paper/821878/fa
Morais, H., Kádár, P., Cardoso, M., Vale, Z. A., & Khodr, H. (2008, July). VPP operating in the isolated grid. In 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1-6). IEEE. http://dx.doi.org/10.1109/PES.2008.4596716
Naghizadeh, M., Manteghi, M., & Naghizadeh, R. (2015). Convergence Among Science and Technology Capabilities of Different Players in Aviation Complex Product Systems. Journal of Technology Development Management, 3(3), 27-54. https://doi.org/10.22104/jtdm.2016.367
 
Naghizadeh, M., Manteghi, M., Ranga, M., & Naghizadeh, R. (2017). Managing integration in complex product systems: The experience of the IR-150 aircraft design program. Technological forecasting and social change, 122, 253-261. http://dx.doi.org/10.1016/j.techfore.2016.06.002
Necoechea-Mondragón, H., Pineda-Domínguez, D., Pérez-Reveles, L., & Soto-Flores, R. (2017). Critical factors for participation in global innovation networks. Empirical evidence from the Mexican nanotechnology sector. Technological Forecasting and Social Change114, 293-312. http://dx.doi.org/10.1016/j.techfore.2016.08.027
Othman, M. M., Hegazy, Y. G., & Abdelaziz, A. Y. (2017). Electrical energy management in unbalanced distribution networks using virtual power plant concept. Electric Power Systems Research145, 157-165. http://dx.doi.org/10.1016/j.epsr.2017.01.004
Park, T.-Y., & Park, T. (2013). How a latecomer succeeded in a complex product system industry: three case studies in the Korean telecommunication systems. Industrial and corporate change, 22(2), 363-396. http://dx.doi.org/10.1093/icc/dts014
Pittaway, L., Robertson, M., Munir, K., Denyer, D., & Neely, A. (2004). Networking and innovation: a systematic review of the evidence. International Journal of Management Reviews, 5(3-4), 137-168. http://dx.doi.org/10.1111/j.1460-8545.2004.00101.x
Pudjianto, D., Ramsay, C., & Strbac, G. (2007). Virtual power plant and system integration of distributed energy resources. IET Renewable power generation1(1), 10-16. http://dx.doi.org/10.1049/iet-rpg:20060023
Rampersad, G., Quester, P., & Troshani, I. (2010). Managing innovation networks: Exploratory evidence from ICT, biotechnology and nanotechnology networks. Industrial marketing management, 39(5), 793-805. http://dx.doi.org/10.1016/j.indmarman.2009.07.002
Saboori, H., Mohammadi, M., & Taghe, R. (2011, March). Virtual power plant (VPP), definition, concept, components and types. In 2011 Asia-Pacific power and energy engineering conference (pp. 1-4). IEEE. http://dx.doi.org/10.1109/APPEEC.2011.5749026
Safardoust, A., Ghazinori, S. S., Manteghi, M., Naghizadeh, M., & Bamdad Soofi, J. (2023). Networking capabilities of large companies in technological fields: components, antecedents and consequences (case study: biopharmaceutical field). Science and Technology Policy Letters. https://stpl.ristip.sharif.ir/article_23145.html?lang=en
 
Shi, Z., Yao, W., Li, Z., Zeng, L., Zhao, Y., Zhang, R., ... & Wen, J. (2020). Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions. Applied Energy278, 115733. http://dx.doi.org/10.1016/j.apenergy.2020.115733
Shimon, A., & Preston, A. (1997). The virtual utility. Boston, MA: Springer, 409. https://doi.org/10.1007/978-1-4615-6167-5
Tarazona, C., Muscholl, M., Lopez, R., & Passelergue, J. C. (2009, September). Integration of distributed energy resources in the operation of energy management systems. In 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE) (pp. 1-5). IEEE. http://dx.doi.org/10.1109/SAE.2009.5534858
Tushar, M. H. K., Zeineddine, A. W., & Assi, C. (2017). Demand-side management by regulating charging and discharging of the EV, ESS, and utilizing renewable energy. IEEE Transactions on Industrial Informatics14(1), 117-126. http://dx.doi.org/10.1109/TII.2017.2755465
Wang, H., Riaz, S., & Mancarella, P. (2020). Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization. Applied Energy259, 114142. http://dx.doi.org/10.1016/j.apenergy.2019.114142
Wang, Y., Gao, W., Qian, F., & Li, Y. (2021). Evaluation of economic benefits of virtual power plant between demand and plant sides based on cooperative game theory. Energy Conversion and Management238, 114180. http://dx.doi.org/10.1016/j.enconman.2021.114180
Yao, E., Samadi, P., Wong, V. W., & Schober, R. (2015). Residential demand side management under high penetration of rooftop photovoltaic units. IEEE Transactions on Smart Grid7(3), 1597-1608. http://dx.doi.org/10.1109/TSG.2015.2472523
Yu, S., Fang, F., Liu, Y., & Liu, J. (2019). Uncertainties of virtual power plant: Problems and countermeasures. Applied energy239, 454-470. http://dx.doi.org/10.1016/j.apenergy.2019.01.224
Yuan, Y., Wei, Z., Sun, G., Sun, Y., & Wang, D. (2014). A real-time optimal generation cost control method for virtual power plant. Neurocomputing143, 322-330. http://dx.doi.org/10.1016/j.neucom.2014.05.060