شناسایی و سطح بندی شاخص های تولید انعطاف پذیر در گروه سایپا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مدیریت دولتی، دانشکده اقتصاد و مدیریت، دانشگاه ارومیه

2 دکتری مدیریت دولتی، دانشکده علوم اقتصادی و اداری، دانشگاه لرستان

چکیده

هدف از انجام مطالعه حاضر مدلسازی ساختاری‌تفسیری شاخص های تولید انعطاف پذیر در گروه سایپا بوده است. این پژوهش از نظر هدف کاربردی و از لحاظ نوع شناسی پژوهش در زمره پژوهش‌های آمیخته با رویکرد کیفی و کمی در پارادایم قیاسی-استقرایی است. شناسایی شاخص های تولید انعطاف پذیر در گروه سایپا از طریق مصاحبه‌های نیمه‌ساختاریافته بر پایه اشباع نظری با 26 نفر از اساتید دانشگاهی و خبرگان در حوزه مدیریت صنعتی، مدیریت بازرگانی و مهندسی صنایع انجام گرفت. روایی و پایایی مصاحبه‌ها به ترتیب با روش روایی محتوای نسبی و شاخص کاپای کوهن تایید شد. در بخش کمی نیز به منظور مدلسازی تولید انعطاف پذیر در گروه سایپا از نظرات 74 نفر از مدیران عالی و میانی شرکت های زیرمجموعه گروه سایپا با روش نمونه‌گیری غیراحتمالی در دسترس استفاده شد. روایی و پایایی پرسشنامه به ترتیب با بهره‌گیری از روایی محتوا و روش آزمون- پس‌آزمون تایید شد. کدگذاری مصاحبه‌ها با استفاده از نرم‌افزار MAXQDA2020 منجر به شناسایی 13 عامل اصلی تولید انعطاف پذیر در گروه سایپا شد. مدلسازی شاخص‌های شناسایی‌شده با روش ساختاری تفسیری و تحلیل میک مک منجر به تشکیل هشت سطح گردید که هوشمند سازی خطوط اثرگذارترین و خودکارسازی اثرپذیرترین شاخص تولید انعطاف پذیر در گروه سایپا بودند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Interpretive Structural Modeling of flexible manufacturing indicators in Saipa Group

نویسندگان [English]

  • morteza piri 1
  • meysam jafari 2
1 Assistant Prof. of Public Administration Department, Faculty of Economics and Management, Urmia University
2 Ph.D. in Public Administration, Faculty of Economics and Administrative Sciences, Lorestan University
چکیده [English]

the purpose of the current study was interpretive structural modeling of flexible manufacturing indicators in Saipa Group. This research is applied in terms of purpose and terms of research typology. It is among mixed research with a qualitative and quantitative approach in the deductive-inductive paradigm. Identifying flexible manufacturing indicators in Saipa Group was conducted through semi-structured interviews based on theoretical saturation with 26 university professors and experts in industrial management, business management and industrial engineering. The validity and reliability of the interviews were confirmed by the method of relative content validity and Cohen's kappa index, respectively. In the quantitative part, the opinions of 74 senior and middle managers of Saipa Group subsidiary companies were used with the available convenience sampling method to model flexible manufacturing in the automobile industry. The validity and reliability of the questionnaire were confirmed using content validity and the test-post-test method. Coding of interviews using MAXQDA2020 software led to identifying 13 main indicators of flexible manufacturing. Modeling of the identified indicators with interpretive structural method and mix-and-match analysis led to the formation of eight levels, the intelligentization of lines was the most effective and automation was the most effective index of flexible manufacturing in Saipa Group.

کلیدواژه‌ها [English]

  • flexible manufacturing
  • Saipa Group
  • ISM
Boyer, K. K. (1998). Longitudinal linkages between intended and realized operations strategies. International Journal of Operations & Production Management, 18(4), 356-373. https://doi.org/10.1108/01443579810199739
Chae, S., Yan, T., & Yang, Y. (2020). Supplier innovation value from a buyer–supplier structural equivalence view: Evidence from the PACE awards in the automotive industry. Journal of Operations Management, 66(7-8), 820-838. https://doi.org/10.1002/joom.1063
Cronin, C., Conway, A., & Walsh, J. (2019). Flexible manufacturing systems using IIoT in the automotive sector. Procedia Manufacturing, 38, 1652-1659. https://doi.org/10.1016/j.promfg.2020.01.119
Delic, M., & Eyers, D. R. (2020). The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry. International Journal of Production Economics, 228, 107689. https://doi.org/10.1016/j.ijpe.2020.107689
Eggert, M., Günther, K., Maletschek, J., Maxiniuc, A., & Mann-Wahrenberg, A. (2022, September). In three steps to software product lines: a practical example from the automotive industry. In Proceedings of the 26th ACM International Systems and Software Product Line Conference-Volume A (pp. 170-177). https://doi.org/10.1145/3546932.3547003
El-Khalil, R., & Darwish, Z. (2019). Flexible manufacturing systems performance in US automotive manufacturing plants: a case study. Production planning & control, 30(1), 48-59. https://doi.org/10.1080/09537287.2018.1520318
Frieske, B., & Stieler, S. (2022). The “semiconductor crisis” as a result of the COVID-19 pandemic and impacts on the automotive industry and its supply chains. World Electric Vehicle Journal, 13(10), 189. https://doi.org/10.3390/wevj13100189
Herrera-García, M. C., & Arias-Portela, C. Y. (2021). Flexible Manufacturing Systems: A Methods Engineering and Operations Management Approach. In Intelligent Human Systems Integration 2021: Proceedings of the 4th International Conference on Intelligent Human Systems Integration (IHSI 2021): Integrating People and Intelligent Systems, February 22-24, 2021, Palermo, Italy (pp. 760-765). Springer International Publishing. https://doi.org/10.1007/978-3-030-68017-6_113
Hottenrott, A., Schiffer, M., & Grunow, M. (2022). Flexible assembly layouts in smart manufacturing: An impact assessment for the automotive industry. IISE Transactions, 55(11), 1144-1159. https://doi.org/10.1080/24725854.2022.2124470
Komesker, S., Kern, W., Wagner, A., Bauernhansl, T., & Ruskowski, M. (2021, June). Structured information processing as enabler of versatile, flexible manufacturing concepts. In Advances in Automotive Production Technology–Theory and Application: Stuttgart Conference on Automotive Production (SCAP2020) (pp. 108-116). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-62962-8_13
Mendes, L., & Machado, J. (2015). Employees’ skills, manufacturing flexibility and performance: a structural equation modelling applied to the automotive industry. International Journal of Production Research, 53(13), 4087-4101. https://doi.org/10.1080/00207543.2014.993772
Mishra, R., Pundir, A. K., & Ganapathy, L. (2018). Empirical assessment of factors influencing potential of manufacturing flexibility in organization. Business Process Management Journal, 24(1), 158-182. https://doi.org/10.1108/BPMJ-07-2016-0157
Moerth-Teo, O., Schlögl, G., Abdul-Hadi, M., Brillinger, M., Weinzerl, M., & Ramsauer, C. (2022). Production Resource Flexibility Assessment: Case Studies in the Automotive Industry. Management and Production Engineering Review, 13. DOI: 10.24425/mper.2022.142379
Prakash, R., Singhal, S., & Agarwal, A. (2017). Modelling manufacturing system effectiveness: an integration of analytical hierarchy process and linear programming. International Journal of Intelligent Enterprise, 4(3), 227-242. https://doi.org/10.1504/IJIE.2017.087627
Qamar, A., Hall, M. A., Chicksand, D., & Collinson, S. (2020). Quality and flexibility performance trade-offs between lean and agile manufacturing firms in the automotive industry. Production Planning & Control, 31(9), 723-738. https://doi.org/10.1080/09537287.2019.1681534
Rădeanu, C., Kovacs, A., Păsculescu, D., Pintilie, D., & Radermacher, L. (2023). EXPERIMENTAL RESEARCH ON ASSURANCE QUALITY BY SECURITY SPECIFIC TO PRODUCTS FROM THE INDUSTRY OF AUTOMOTIVE. International Multidisciplinary Scientific GeoConference: SGEM, 23(1.1), 325-332. https://doi.org/10.5593/sgem2023/1.1/s03.39
Rybicka, J., Tiwari, A., & Enticott, S. (2016). Testing a flexible manufacturing system facility production capacity through discrete event simulation: automotive case study. International Journal of Industrial and Manufacturing Engineering, 10(4), 719-723.https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Rybicka%2C+J.%2C+Tiwari%2C+A.%2C+%26+Enticott%2C+S.+%282016%29.+Testing+a+flexible+manufacturing+system+facility+production+capacity+through+discrete+event+simulation%3A+automotive+case+study.+International+Journal+of+Industrial+and+Manufacturing+Engineering%2C+10%284%29%2C+719-723&btnG=
Sellitto, M. A., & Mancio, V. G. (2019). Implementation of a Flexible Manufacturing System in a production cell of the automotive industry: decision and choice. Production, 29, e20180092. https://doi.org/10.1590/0103-6513.20180092
Serfass, D. G., & Sherman, R. A. (2013). A methodological note on ordered Q-Sort ratings. Journal of Research in Personality, 47(6), 853-858. https://doi.org/10.1016/j.jrp.2013.08.013
Solke, N. S., & Singh, T. P. (2018). Analysis of relationship between manufacturing flexibility and lean manufacturing using structural equation modelling. Global Journal of Flexible Systems Management, 19(2), 139-157. https://doi.org/10.1007/s40171-017-0181-5
Wang, L. (2023). The Development of Flexible Manufacturing Systems in Automotive Production Under the Background of Industry 4.0: A Descriptive Study. Academic Journal of Science and Technology, 8(3), 29-31. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wang%2C+L.+%282023%29.+The+Development+of+Flexible+Manufacturing+Systems+in+Automotive+Production+Under+the+Background+of+Industry+4.0%3A+A+Descriptive+Study.+Academic+Journal+of+Science+and+Technology&btnG=