Abbas, A., Zhang, L., & Khan, S. (2014). A literature review on the state-of-the-art in patent analysis. World Patent Information, 37. https://doi.org/10.1016/j.wpi.2013.12.006
Bote-Lorenzo, M., Gómez-Sánchez, E., Mediavilla-Pastor, C., & Asensio-Pérez, J. (2018). Online machine learning algorithms to predict link quality in community wireless mesh networks. Computer Networks, 132. https://doi.org/10.1016/j.comnet.2018.01.005
Caferoglu, H., Elsner, D., & Moehrle, M. G. (2023). The Interplay Between Technology and Pre-Industry Convergence: An Analysis in the Technology Field of Smart Mobility. IEEE Transactions on Engineering Management, 70(4), 1504–1517. https://doi.org/10.1109/TEM.2021.3092211
Cho, Y., & Daim, T. (2013). “Technology Forecasting Methods”, in Research and Technology Management in the Electricity Industry: Methods, Tools and Case Studies (pp. 67–112).
Choi, J. Y., Jeong, S., & Kim, K. (2015). A Study on Diffusion Pattern of Technology Convergence: Patent Analysis for Korea. Sustainability, 7, 11546–11569. https://doi.org/10.3390/su70911546
Choi, S., Afifuddin, M., & Seo, W. (2022). A Supervised Learning-Based Approach to Anticipating Potential Technology Convergence. IEEE Access, 10, 19284–19300. https://doi.org/10.1109/ACCESS.2022.3151870
Ciarli, T., Kenney, M., Massini, S., & Piscitello, L. (2021). Digital technologies, innovation, and skills: Emerging trajectories and challenges. Research Policy, 50(7), 104289. https://doi.org/10.1016/j.respol.2021.104289
de Mello Vianna, C. M., Fermam, M. K. S., da Silva Rodrigues, M. P., & Mosegui, G. B. G. (2016). The Link Between Industry and Social Interests in Health in Brazil’s National Health Innovation System: The Experience of the Brazilian National Institute of Traumatology and Orthopedics (INTO). Cadernos De Saúde Pública. https://doi.org/10.1590/0102-311x00189414
Digital Economy Compass (Digital Economy Compass). (2019). Statistica. www.statista.com/outlook/digital-markets
Drew, S. A. W. (2006). Building technology foresight: Using scenarios to embrace innovation. European Journal of Innovation Management, 9(3), 241–257. https://doi.org/10.1108/14601060610678121
Eisenstein, M. (2022). Four ways that AI and robotics are helping to transform other research fields. Nature, 610, S6–S8. https://doi.org/10.1038/d41586-022-03209-2
Fu, Y., & Aldrich, C. (2020). Deep Learning in Mining and Mineral Processing Operations: A Review. IFAC-PapersOnLine, 53(2), 11920–11925. https://doi.org/10.1016/j.ifacol.2020.12.712
Gruetzemacher, R., Dorner, F. E., Bernaola-Alvarez, N., Giattino, C., & Manheim, D. (2021). Forecasting AI progress: A research agenda. Technological Forecasting and Social Change, 170, 120909. https://doi.org/10.1016/j.techfore.2021.120909
Haleem, A., Mannan, B., Luthra, S., Kumar, S., & Khurana, S. (2019). Technology forecasting (TF) and technology assessment (TA) methodologies: A conceptual review. Benchmarking: An International Journal, 26(1), 48–72. https://doi.org/10.1108/BIJ-04-2018-0090
Hassani, H., Silva, E., & Kaabi, A. (2017). The role of innovation and technology in sustaining the petroleum and petrochemical industry. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2017.03.003
Hoffimann, J., Mao, Y., Wesley, A., & Taylor, A. (2018). Sequence Mining and Pattern Analysis in Drilling Reports with Deep Natural Language Processing. https://doi.org/10.2118/191505-MS
Holland, C., McCarthy, A., Ferri, P., & Shapira, P. (2024). Innovation intermediaries at the convergence of digital technologies, sustainability, and governance: A case study of AI-enabled engineering biology. Technovation, 129, 102875. https://doi.org/10.1016/j.technovation.2023.102875
Hou, S., & Hoeber, H. (2020). Seismic Processing with Deep Convolutional Neural Networks: Opportunities and Challenges. 1–5. https://doi.org/10.3997/2214-4609.202010647
Hou, S., & Messud, J. (2021). Machine learning for seismic processing: The path to fulfilling promises. 3204–3208. https://doi.org/10.1190/segam2021-3590137.1
Huang, Y., Porter, A. L., Zhang, Y., Lian, X., & Guo, Y. (2019). An assessment of technology forecasting: Revisiting earlier analyses on dye-sensitized solar cells (DSSCs). Technological Forecasting and Social Change, 146, 831–843. https://doi.org/10.1016/j.techfore.2018.10.031
Issa, H., Jabbouri, R., & Palmer, M. (2022). An artificial intelligence (AI)-readiness and adoption framework for AgriTech firms. Technological Forecasting and Social Change, 182, 121874. https://doi.org/10.1016/j.techfore.2022.121874
Jia, Y., & Ma, J. (2017). What can machine learning do for seismic data processing? An interpolation application. GEOPHYSICS, 82, V163–V177. https://doi.org/10.1190/geo2016-0300.1
Joelen Pastva, R. K., Bart Davis, Karen Gutzman, & Sorensen, A. (2020). Compelling Evidence: New Tools and Methods for Aligning Collections with the Research Mission. The Serials Librarian, 78(1–4), 219–227. https://doi.org/10.1080/0361526X.2020.1701393
Jung, S., Kim, K., & Lee, C. (2021). The nature of ICT in technology convergence: A knowledge-based network analysis. PLOS ONE, 16(7), 1–20. https://doi.org/10.1371/journal.pone.0254424
Kim, D., Lee, H., & Kwak, J. (2017). Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network. Research Policy, 46(7), 1234–1254. https://doi.org/10.1016/j.respol.2017.05.008
Lee, C., Hong, S., & Kim, J. (2021). Anticipating multi-technology convergence: A machine learning approach using patent information. Scientometrics, 126(3), 1867–1896. https://doi.org/10.1007/s11192-020-03842-6
Lee, C., Park, G., & Kang, J. (2018). The impact of convergence between science and technology on innovation. The Journal of Technology Transfer, 43(2), 522–544. https://doi.org/10.1007/s10961-016-9480-9
Li, D., Peng, S., Lu, Y., Guo, Y., & Cui, X. (2019). Seismic structure interpretation based on machine learning: A case study in coal mining. Interpretation, 7, 1–44. https://doi.org/10.1190/int-2018-0208.1
Maleki, A., & Rosiello, A. (2019). Does knowledge base complexity affect spatial patterns of innovation? An empirical analysis in the upstream petroleum industry. Technological Forecasting and Social Change, 143, 273–288. https://doi.org/10.1016/j.techfore.2019.01.020
Naghizadeh, M., Manteghi, M., & Naghizadeh, R. (2015). CONVERGENCE AMONG SCIENCE AND TECHNOLOGY CAPABILITIES OF DIFFERENT PLAYERS IN AVIATION COMPLEX PRODUCT SYSTEMS. Journal of Technology Development Management, 3(3), 27–54. https://doi.org/10.22104/jtdm.2016.367 [in Persian]
Ngeljaratan, L., Bas, E. E., & Moustafa, M. A. (2024). Unmanned Aerial Vehicle-Based Structural Health Monitoring and Computer Vision-Aided Procedure for Seismic Safety Measures of Linear Infrastructures. Sensors, 24(5). https://doi.org/10.3390/s24051450
Park, I., & Yoon, B. (2018). Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network. Journal of Informetrics, 12(4), 1199–1222. https://doi.org/10.1016/j.joi.2018.09.007
Park, S., & Jun, S. (2022). Patent Analysis Using Bayesian Data Analysis and Network Modeling. Applied Sciences, 12, 1423. https://doi.org/10.3390/app12031423
Proskuryakova, L., & Filippov, S. (2015). Energy Technology Foresight 2030 in Russia: An Outlook for Safer and More Efficient Energy Future. Energy Procedia, 75, 2798–2806. https://doi.org/10.1016/j.egypro.2015.07.550
Sick, N., Preschitschek, N., Leker, J., & Bröring, S. (2019). A new framework to assess industry convergence in high technology environments. Technovation, 84–85, 48–58. https://doi.org/10.1016/j.technovation.2018.08.001
Talbi, B., Laib, A., & Gharib, M. (2023). Stick-slip stabilization in oil well drill-strings via optimal hybrid fractional order fuzzy logic control scheme. Journal of Low Frequency Noise, Vibration and Active Control, 42(2), 911–926. https://doi.org/10.1177/14613484221135863
Tang, Z., Wu, B., Wu, W., & Ma, D. (2023). Fault Detection via 2.5D Transformer U-Net with Seismic Data Pre-Processing. Remote Sensing, 15(4). https://doi.org/10.3390/rs15041039
Urbinati, A., Chiaroni, D., Chiesa, V., & Frattini, F. (2018). The Role of Digital Technologies in Open Innovation Processes: An exploratory multiple case study analysis. R& D Management, 50, 136–160. https://doi.org/10.1111/radm.12313
Wacker, J. G. (1998). A definition of theory: Research guidelines for different theory-building research methods in operations management. Journal of Operations Management, 16(4), 361–385. https://doi.org/10.1016/S0272-6963(98)00019-9
Yang, Y., Lichtenwalter, R., & Chawla, N. (2015). Evaluating Link Prediction Methods. Knowledge and Information Systems, 45. https://doi.org/10.1007/s10115-014-0789-0
Yuskevich, I., Smirnova, K., Vingerhoeds, R., & Golkar, A. (2021). Model-based approaches for technology planning and roadmapping: Technology forecasting and game-theoretic modeling. Technological Forecasting and Social Change, 168, 120761. https://doi.org/10.1016/j.techfore.2021.120761
Zhang, L., Liu, L., Huang, G., Zhu, H., Zha, H., Qiu, Z., Zhang, X., & Lu, W. (2022). Improving the performance of Uyghur speech recognition based on Factorized Time-Delay Neural Network. Journal of Physics: Conference Series, 2400, 012059. https://doi.org/10.1088/1742-6596/2400/1/012059
Zhong, R., Salehi, C., & Johnson Jr, R. (2022). Machine Learning for Drilling Applications: A Review. Journal of Natural Gas Science and Engineering. https://doi.org/10.1016/j.jngse.2022.104807