بازدارنده‌های پذیرش هوش مصنوعی در خدمات بانکی (مطالعه موردی کشور ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اقتصاد نظری، دانشکده اقتصاد، دانشگاه علامه طباطبایی، محقق و پژوهشگر بانک ملت، تهران، ایران.

2 دانشجوی دکتری مدیریت کارآفرینی دانشگاه رازی و مدرس مدعو دانشگاه ملی مهارت کرمانشاه

چکیده

پژوهش حاضر با هدف شناسایی بازدارنده‎ها و موانع پذیرش هوش مصنوعی در خدمات بانکی با استفاده از مدل TOE انجام شده است. رویکرد حاکم بر پژوهش آمیخته (کیفی-کمی) بوده که در بخش کیفی از روش تحلیل تم و مضمون و در بخش کمی نیز از روش پیمایشی بهره گرفته شد. نمونه مورد مطالعه در بخش کیفی شامل 16 مصاحبه است. در بخش کمی پژوهش نیز، جامعه آماری به تعداد 100 نفر بود که با استفاده از جدول کجرسی و مورگان تعداد 80 نفر به عنوان نمونه انتخاب شدند. بخش کیفی؛ به‌منظور رعایت اعتبار پژوهش از معیار حساسیت پژوهشگران، انتخاب مشارکت‎کنندگان مناسب، درگیری طولانی‎مدت با موضوع و تأیید مشارکت‎کنندگان و پایایی نیز از کدگذاری مجدد و بررسی همکار استفاده گردید و مورد تأیید قرار گرفت. در بخش کمی روایی محتوایی پرسشنامه محقق ساخته توسط اساتید گروه مدیریت دانشگاه رازی و پایایی آن با آزمون آلفای کرونباخ 73 درصد تأیید شد. نتایج تحلیل محتوای استقرایی، طی سه رویه کُدگذاری باز، کدگذاری ثانویه (یافتن مفاهیم) و مقوله‎ها،به شناسایی 52 کد اولیه در قالب 3 کد مفهومی(بازدارنده‎های فناوری، سازمانی نهادی و محیطی) منتج شد که بر اساس نتایج آزمون، بازدارنده محیطی دارای بالاترین اولویت و بازدارنده نهادی سازمانی نیز پایین‎ترین اولویت را کسب نمود

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Barriers to adoption of artificial intelligence in banking services (case study of Iran)

نویسندگان [English]

  • Fereshteh Moradian 1
  • SHahin Behvar 2
1 Theoretical Economics, Faculty of Economics, Allameh Tabatabai University, Tehran, Iran.
2 PhD student in Entrepreneurship Management at Razi University and visiting lecturer at Kermanshah National Skills University
چکیده [English]

The current research was conducted with the aim of identifying the barriers and adoption of artificial intelligence in banking services using the content analysis model.The project was based on mixed research(qualitative-quantitative),which was taken in the qualitative part from the topic and theme analysis method and in the quantitative part from the survey method.The sample studied in the qualitative section includes 12 interviews.In the quantitative part of the research, the statistical population was 55 people,and 48 people were selected as a sample using the Krejcie and Morgan table.In the qualitative section;Select contributors,long-term engagement with the subject,and researchers' review of codes and reliability are also used and examined according to the features of equivalence.In the quantitative part,the validity of the researcher's questionnaire made by the professors of Razi University's management department and its reliability with Cronbach alpha test has been evaluated at 73%. The results of inductive analysis,through the three procedures of open coding, secondary coding(finding concepts)and categories,have led to the identification of 52primary codes in the form of 3conceptual codes(technological, organizational,institutional,and environmental barriers),which were obtained based on the results.According to the Friedman test,the environmental deterrent has a higher priority and the organizational institutional deterrent has the lowest priority,according to the respondents.

کلیدواژه‌ها [English]

  • Banking services
  • Artificial intelligence
  • Inhibitors
  • Content analysis
Alqutub, K. (2023). Customers Adaptation of E-banking services; extending TAM through Anthpmorphism in Saudi Arabia. Valley International Journal Digital Library, 5249-5262.‏
Alsheiabni, S., Cheung, Y., & Messom, C. (2019). Factors inhibiting the adoption of artificial intelligence at organizational-level: A preliminary investigation. In Americas Conference on Information Systems 2019 (p. 2). Association for Information Systems.‏
Alsheibani, S., Cheung, Y., & Messom, C. (2018). Artificial Intelligence Adoption: AI-readiness at Firm-Level. PACIS, 4, 231-245.‏
Anshari, M., Almunawar, M.N., and Masri, M., (2019). Financial Technology and Disruptive Innovation in ASEAN. Hershey PA, USA: IGI Global.
Belhaj, M., & Hachaïchi, Y. (2023). Artificial Intelligence, Machine Learning and Big Data in Finance Opportunities, Challenges, and Implications for Policy Makers.‏
Boobier, T. (2020). AI and the Future of Banking. John Wiley & Sons.
Caron, M. S. (2019). The transformative effect of AI on the banking industry. Banking & Finance Law Review, 34(2), 169-214.
Chatterjee, S. (2020). AI strategy of India: policy framework, adoption challenges and actions for government. Transforming Government: People, Process and Policy, 14(5), 757-775.‏
Cheng, B., Lin, H., & Kong, Y. (2023). Challenge or hindrance? How and when organizational artificial intelligence adoption influences employee job crafting. Journal of Business Research, 164, 113987.‏
Daud, S. N. M., Khalid, A., & Azman-Saini, W. N. W. (2022). FinTech and financial stability: Threat or opportunity? Finance Research Letters, 47, 102667.‏
Doumpos, M., Zopounidis, C., Gounopoulos, D., Platanakis, E., & Zhang, W. (2023). Operational research and artificial intelligence methods in banking. European Journal of Operational Research, 306(1), 1-16.‏
Government information base; https://dolat.ir/detail/431756 (In Persian)
Garg, P., Gupta, B., Chauhan, A. K., Sivarajah, U., Gupta, S., & Modgil, S. (2021). Measuring the perceived benefits of implementing blockchain technology in the banking sector. Technological forecasting and social change, 163, 120407.‏
Ghandour, A. (2021). Opportunities and challenges of artificial intelligence in banking: Systematic literature review. TEM Journal, 10(4), 1581-1587.‏
Guo, H., & Polak, P. (2021). Artificial intelligence and financial technology FinTech: How AI is being used under the pandemic in 2020. The Fourth Industrial Revolution: Implementation of Artificial Intelligence for Growing Business Success, 169-186.
Hao, X., & Demir, E. (2023). Artificial intelligence in supply chain decision-making: an environmental, social, and governance triggering and technological inhibiting protocol. Journal of Modelling in Management, (ahead-of-print).‏
Hua, X., Huang, Y., & Zheng, Y. (2019). Current practices, new insights, and emerging trends of financial technologies. Industrial Management & Data Systems, 119(7), 1401-1410.‏
Huang, S. Y., & Lee, C. J. (2022). Predicting continuance intention to fintech chatbot. Computers in Human Behavior, 129, 107027.‏
Jakšič, M., & Marinč, M. (2019). Relationship banking and information technology: The role of artificial intelligence and FinTech. Risk Management, 21(1), 1-18.
Kar, A. K., & Kushwaha, A. K. (2023). Facilitators and barriers of artificial intelligence adoption in business–insights from opinions using big data analytics. Information Systems Frontiers, 25(4), 1351-1374.‏
Kar, S., Kar, A. K., & Gupta, M. P. (2021). Modeling drivers and barriers of artificial intelligence adoption: Insights from a strategic management perspective. Intelligent Systems in Accounting, Finance and Management, 28(4), 217-238.‏
Kaur, A., & Tanwar, A. (2024). Adoption Potential and Challenges of Artificial Intelligence in Banking. In Sustainable Investments in Green Finance (pp. 271-293). IGI Global.‏
Kaur, D., Sahdev, S. L., Sharma, D., & Siddiqui, L. (2020). Banking 4.0:‘The Influence of Artificial Intelligence on the Banking Industry & How AI Is Changing the Face of Modern Day Banks’. International Journal of Management, 11(6).
Königstorfer, F., & Thalmann, S. (2020). Applications of Artificial Intelligence in commercial banks–A research agenda for behavioral finance. Journal of behavioral and experimental finance, 27, 100352.doi: 10.1016/j.jbef.2020.100352
Kruse, L., Wunderlich, N., & Beck, R. (2019). Artificial intelligence for the financial services industry: What challenges organizations to succeed.‏ Proceedings of the 52th Hawaii International Conference on System Sciences (HICSS 2019).
Kurni, M., Saritha, K., Nagadevi, D., & Reddy, K. S. (2022). A forefront insight into the integration of AI and blockchain technologies. In Blockchain Technology for Emerging Applications (pp. 297-320). Academic Press.‏
Kyngäs, H. (2020). Qualitative research and content analysis. The application of content analysis in nursing science research, 3-11.‏
Lee, C. C., Li, X., Yu, C. H., & Zhao, J. (2021). Does fintech innovation improve bank efficiency? Evidence from China’s banking industry. International Review of Economics & Finance, 74, 468-483.‏
Lin, R. R., & Lee, J. C. (2023). The supports provided by artificial intelligence to continuous usage intention of mobile banking: Evidence from China. Aslib Journal of Information Management.‏
Maja, M. M., & Letaba, P. (2022). Towards a data-driven technology roadmap for the bank of the future: Exploring big data analytics to support technology roadmapping. Social Sciences & Humanities Open, 6(1), 100270.‏
Malekzadeh, N., Dadashpoor, H., & Rafieian, M. (2020). Investigating the factors influential on the urban and regional spatial structure using the content analysis method. Urban Planning Knowledge, 3(4), 1-14.‏
Mamun, Md Al., Malik, M,. Mia, M. A. H. (2023). Peer Pressure, Information Technology Adoption, and Bank Performance. Asian Journal of Business and Accounting, 16(1), 161-191.
Mhlanga, D. (2020). Industry 4.0 in finance: the impact of artificial intelligence (ai) on digital financial inclusion. International Journal of Financial Studies, 8(3), 45.
Mogaji, E., Balakrishnan, J., Nwoba, A. C., & Nguyen, N. P. (2021). Emerging-market consumers’ interactions with banking chatbots. Telematics and Informatics, 65, 101711.‏
Moumivand, Behzad, Gholami Jamkarani, Reza, Maleki, Mohammad Hassan, Jahangirnia, Hossein. (2023). A framework for identifying the drivers affecting the future of the banking industry with emphasis on the role of financial technology. Financial Economics, 16(61), 194-175. (In Persian).
Murinde, V., Rizopoulos, E., & Zachariadis, M. (2022). The impact of the FinTech revolution on the future of banking: Opportunities and risks. International Review of Financial Analysis, 81, 102103.‏
Mutawa, M. A., & Rashid, H. (2020, August). Comprehensive review on the challenges that impact artificial intelligence applications in the public sector. In Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management (Vol. 10).‏
Nair, M. M., Deshmukh, A., & Tyagi, A. K. (2024). Artificial Intelligence for Cyber Security: Current Trends and Future Challenges. Automated Secure Computing for Next‐Generation Systems, 83-114.‏
Nazareno, L., & Schiff, D. S. (2021). The impact of automation and artificial intelligence on worker well-being. Technology in Society, 67, 101679.‏
Ng, K. K., Chen, C. H., Lee, C. K., Jiao, J. R., & Yang, Z. X. (2021). A systematic literature review on intelligent automation: Aligning concepts from theory, practice, and future perspectives. Advanced Engineering Informatics, 47, 101246.‏
Noreen, U., Shafique, A., Ahmed, Z., & Ashfaq, M. (2023). Banking 4.0: Artificial intelligence (AI) in banking industry & consumer’s perspective. Sustainability, 15(4), 3682.‏
O’neal, S. (2019). Big Four and blockchain: Are auditing giants adopting yet.‏
Patel, R., Migliavacca, M., & Oriani, M. E. (2022). Blockchain in banking and finance: A bibliometric review. Research in International Business and Finance, 62, 101718.‏
Rahman, A. (2023). Indexes of Relative Technology and Digital Currency. IRJEMS International Research Journal of Economics and Management Studies, 2(2), 80-86.‏
Rahman, A. (2023). Modern Banking Sector Employs Artificial Intelligence (AI).‏ JOURNAL OF MANAGEMENT & ENTREPRENEURSHIP, 7(1), 21-31.
Rahman, M., Ming, T. H., Baigh, T. A., & Sarker, M. (2023). Adoption of artificial intelligence in banking services: an empirical analysis. International Journal of Emerging Markets, 18(10), 4270-4300.‏
Rodrigues, A. R. D., Ferreira, F. A., Teixeira, F. J., & Zopounidis, C. (2022). Artificial intelligence, digital transformation and cybersecurity in the banking sector: A multi-stakeholder cognition-driven framework. Research in International Business and Finance, 60, 101616.‏
Roseline, J. F., Naidu, G. B. S. R., Pandi, V. S., alias Rajasree, S. A., & Mageswari, N. (2022). Autonomous credit card fraud detection using machine learning approach☆. Computers and Electrical Engineering, 102, 108132.‏
Sadok, H., Sakka, F., & El Maknouzi, M. E. H. (2022). Artificial intelligence and bank credit analysis: A review. Cogent Economics & Finance, 10(1), 2023262.‏
Safari, Ehram, Ansari, Ali Asghar. (2022). Identifying and Ranking the Factors Affecting the Acceptance of Artificial Intelligence in the Public and Private Sectors, Business Intelligence Management Studies, 11(41), 254-221. (In Persian).
Sangari, M.S. (2019). Developing a practical evaluation framework for identifying critical factors to achieve supply chain agility, 2-24.
Sastry, V. V. L. N. (2020). Artificial Intelligence in Financial Services and Banking Industry. Idea Publishing.
Saunders, M., Lewis, P., & Thornhill, A. (2009). Research methods forbusiness students. Essex: Prentice Hall: Financial Times.‏
Shambira, L. (2020). Exploring the adoption of artificial intelligence in the Zimbabwe banking sector. European Journal of Social Sciences Studies, 5(6).‏
Sihotang, D. M., Hidayanto, A. N., Phusavat, K., & Diana, E. (2024). Investigating the role of transformational leadership and TOE framework to adopt e-government in Indonesia: the case of village information system. Electronic Government, an International Journal, 20(1), 94-108.‏
Silva, R. D. (2021). Calls for behavioural biometrics as bank fraud soars. Biometric Technology Today, 2021(9), 7-9.‏
Singhal, A., Dube, P., & Jain, V. K. (2022). Modelling barriers of artificial intelligence in banking sectors using total interpretive structural modelling. International Journal of Applied Decision Sciences, 15(3), 311-335.‏
Talwar, R., Wells, S., Whittington, A., Koury, A., & Romero, M. (2017). Beyond genuine stupidity: Ensuring AI serves humanity (Vol. 1). Fast Future Publishing Ltd.
Thowfeek, M. H., Samsudeen, S. N., & Sanjeetha, M. B. F. (2020). Drivers of artificial intelligence in banking service sectors. Solid State Technology, 63(5), 6400-6411.‏
Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington. MA: Lexington Books.‏
Turchin, A., & Denkenberger, D. (2020). Classification of global catastrophic risks connected with artificial intelligence. Ai & Society, 35(1), 147-163.‏
Ullah, N., Al-Rahmi, W. M., Alfarraj, O., Alalwan, N., Alzahrani, A. I., Ramayah, T., & Kumar, V. (2022). Hybridizing cost saving with trust for blockchain technology adoption by financial institutions. Telematics and Informatics Reports, 6, 100008.‏
Velev, D. G., & Zahariev, M. P. (2022). Challenges of Bank Service Digitalization by Artificial Intelligence: The Case of Bulgaria. International Journal of Trade, Economics and Finance, 13(3).‏
Verma, J. (2022). Application of machine learning for fraud detection–a decision support system in the insurance sector. In Big data analytics in the insurance market (pp. 251-262). Emerald Publishing Limited.‏
Vijai, D. C. (2019). Artificial intelligence in indian banking sector: challenges and opportunities. International Journal of Advanced Research, 7(5), 1581-1587.
Zare Zadeh, Elham, Moeinadin, Mahmoud, Dehghan Dehnavi, Hossein. (2024). Analysis of corporate social responsibility dimensions based on qualitative content analysis and fuzzy screening. Management Accounting Knowledge & Management Auditing, 13(50), 185-169. (In Persian).