شناسایی چالش‌های به کارگیری هوش مصنوعی در مدیریت بحران‌های سازمانی (مورد مطالعه: سازمان‌های دولتی شهر کرمانشاه)

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه ایلام

چکیده

پژوهش حاضر با هدف شناسایی چالش‌های به کارگیری هوش مصنوعی در مدیریت بحران‌های سازمانی (مورد مطالعه: مدیران و کارکنان سازمانهای دولتی شهر کرمانشاه) انجام شد. تحقیق از نوع کاربردی و از نظر ماهیت، آمیخته اکتشافی (کیفی ـ کمّی) و شیوه گردآوری داده‌ها در بخش کیفی نظر خبرگان با استفاده از روش دلفی بود و در بخش کمّی از پرسشنامه محقق ساخته استفاده شد. جامعه آماری این تحقیق در بخش کیفی شامل 17 نفر از خبرگان اعضای هیئت‌علمی و کارشناسان در حوزه مدیریت و در بخش کمی 11400 نفر از از مدیران و کارکنان شهر کرمانشاه بود که حجم نمونه این تحقیق طبق جدول مورگان تعداد 384 نفر می‌باشند. نمونه‌گیری در بخش کیفی به‌صورت هدفمند گلوله برفی و در بخش کمی به‌صورت تصادفی ساده انجام‌شده است. ابزار گردآوری داده‌ها در بخش کیفی چک لیست روش دلفی و در بخش کمّی پرسشنامه مبتنی بر خروجی دلفی بود. داده‌ها با استفاده از تحلیل عاملی تأییدی تجزیه و تحلیل شدند. نتایج پژوهش نشان داد که الگوی هوش‌مصنوعی در مدیریت بحران سازمانها شامل 9متغیر اصلی و 28 بعد می‌باشد که متغیرهای اصلی شامل چالش‌های حقوقی و قانونی، چالش‌های منابع انسانی، چالش‌های زیست‌محیطی، چالش‌های ساختاری، چالش‌های مالی، چالش‌های مالکیت، چالش‌های فرهنگی، چالش‌های رسانه‌ای، چالش‌های اخلاقی می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identifying the Challenges of Applying Artificial Intelligence (AI) in Managing Organizational Crises (A Case Study: Public Organizations in the City of Kermanshah)

نویسندگان [English]

  • asma vahedi
  • Ardeshir Shiri
  • Seydmehdi Vayseh
university o Ilam
چکیده [English]

The aim of the present research was to identify the challenges of using artificial intelligence in the management of organizational crises (case study: managers and employees of government organizations in Kermanshah). This research was of an applied type and in terms of its nature, it was an exploratory mix (qualitative-quantitative) and the method of data collection was in the qualitative part of experts' opinions using the Delphi method, and in the quantitative part, a researcher-made questionnaire was used. The statistical population of this research in the qualitative part included 17 experts from faculty members and experts in the field of management and in the quantitative part 11400 people from managers and employees of Kermanshah city, the sample size of this research is 384 people according to Morgan's table. Sampling in the qualitative section as It is purposefully snowballed and in a small part randomly done. The data collection tool in the qualitative part was the Delphi method checklist and in the quantitative part, the questionnaire was based on the Delphi output. Data were analyzed using confirmatory factor analysis. The results showed that the artificial intelligence model in crisis management of organizations includes 9 main variables and 28 dimensions

کلیدواژه‌ها [English]

  • artificial intelligence
  • crisis management
  • organizational crisis
  • public organizations
Abbasi, Hojjat and Sivandian. (2019). Knowledge management and investigating the role of artificial intelligence and system experts in its types. Contemporary Research Quarterly in Management and Accounting Sciences, 2(4), 67-79.
 Bahri, Reza; Fasangri, Mehdi and Yazdanian, Vahid. (2021). New communication and information technologies in crisis management: challenges and opportunities, requirements and the proposed framework.
 Broussard, M. (2015). Artificial intelligence for investigative reporting: Using an expert system to enhance journalists’ ability to discover original public affairs stories. Digital Journalism, 3(6), 814-831.
 Das, S., Dey, A., Pal, A., & Roy, N. (2015). Applications of artificial intelligence in machine learning: review and prospect. International Journal of Computer Applications, 115(9).
Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: a review and bibliometric analysis. The TQM Journal, 32(4), 869-896.
Guo, Y., & Lyu, X. (2021). Strategic management model of network organization based on artificial intelligence and modular enterprise big data. Mobile Information Systems, 2021, 1-13.
Haji Dehabadi, Mohammad Ali, Behzadi Naba, Fatemeh and Ismaili, Saleh. (2013). An introduction to the criminal liability of robotics from the perspective of technological rules and Islamic law. Comparative Research Quarterly of Islam and the West, 1(2), 1-18.
 Hazrat Chakhairlou, Saeed and Shamsi, Miraziz and Zarin Qobaei, Ibrahim. (2021). The effect of using artificial intelligence in crisis management. The 7th Annual International Congress on Civil Engineering, Architecture, and Urban Development, Tehran.
 Hosseini, Yaqub and Demnabi Assal, Anna. (2013). Investigating the impact of strategic management on the quality of crisis management operations, a case study of the country's rail transport industries. Crisis Management Quarterly, 2, 77-86.
 Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy Artificial Intelligence. Government Information Quarterly, 37(3), 101493.
Jamali Monfared, Nasreen and Shaibat al-Hamdi, Seyyed Ahmed. (2014). Application of artificial intelligence in manpower management. The First International Conference on Industrial Engineering, Management, and Accounting, Tehran.
 Kuzior, A., Kwilinski, A., & Tkachenko, V. (2019). Sustainable development of organizations based on the combinatorial model of artificial intelligence. Entrepreneurship and Sustainability Issues, 7(2), 1353.
Lee, J., Suh, T., Roy, D., & Baucus, M. (2019). Emerging technology and business model innovation: the case of artificial intelligence. Journal of Open Innovation: Technology, Market, and Complexity, 5(3), 44.
 Makarius, E. E., Mukherjee, D., Fox, J. D., & Fox, A. K. (2020). Rising with the machines: A sociotechnical framework for bringing artificial intelligence into the organization. Journal of Business Research, 120, 262-273.
Mansoori Moed, Angel. (2017). Introducing a model for managing organizational crises with a strategic approach. Scientific Quarterly of National Defense Strategic Management Studies, 3(9), 2-288.
Mansouri, Ali, Khaleghi Farghani, Armin, & Jafari Nia, Saeed. (2023). Foresight of Entrepreneurial Opportunities in the Field of Human Resources in Iran Based on Technological Trends. Technology Development Management, 11(3), 9-42.
Mori, Y., East, J. E., Hassan, C., Halvorsen, N., Berzin, T. M., Byrne, M., ... & Rex, D. K. (2023). Benefits and challenges in implementation of artificial intelligence in colonoscopy: World Endoscopy Organization position statement. Digestive Endoscopy.
Qasemi, Shivasadat, Khamseh, Abbas, & Iranban, Seyed Javad. (2024). Identifying Novel Research Areas in Artificial Intelligence for Technology Monitoring Systems in High-Tech Companies. Technology Development Management, 12(3)
Rabiei, Ali and Khosravi, Sadra. (2018). Command management of communication crises (a model based on the combination of artificial and collective intelligence). Cultural and Communication Studies, 6(21), 33-54.
Shari'atnejad, Ali, Derikondi, Yasin, & Mousavi Zadeh, Seyedeh Maryam. (2024). Identifying and Analyzing Opportunities and Challenges of Corporate Digital Responsibility (CDR) in the Age of Artificial Intelligence with an FCM Approach (Fuzzy Cognitive Mapping). Technology Development Management, 12(1), 46-78.
Sousa, V., Matos, J. P., & Matias, N. (2014). Evaluation of artificial intelligence tool performance and uncertainty for predicting sewer structural condition. Automation in Construction, 44, 84-91.
 Soraya, Erfane and Meshkani, Farhani, Navid and Shafi, Farhang. (2018). Application of artificial intelligence in human resource management. The Third National Conference on Management and Fuzzy Systems, Ivanki.
Tulai, Ruhollah. (2023). Interaction between humans and artificial intelligence in knowledge management. Organizational Knowledge Management Quarterly, 1(20), 11-21.
 Varian, H. (2018). Artificial intelligence, economics, and industrial organization. In The Economics of Artificial Intelligence: An Agenda (pp. 399-419). University of Chicago Press.
 Von Krogh, G. (2018). Artificial intelligence in organizations: New opportunities for phenomenon-based theorizing. Academy of Management Discoveries, 4(4), 404-409.
Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379-1391.
 
Wong, T. Y., & Bressler, N. M. (2016). Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. Jama, 316(22), 2366-2367.
Zizpouran, Zahra and Moradi, Alireza. (2022). Application of artificial intelligence in management. The Second International Conference on Engineering and Computer Science, Najaf Abad.