- اردکانیان، رضا،1397، ظرفیت نیروگاههای تجدید پذیر ایران به ۴۰۰۰ مگاوات میرسد. دسترسی در 25/5/1397 از وبسایت: goo.gl/aUQjCq
- آذر، عادل، نجفی توانا، سعید، قربانی، حسین،1394، نگاشت نقشه پایش فرایند کیفیت اقلام آماری مرکز آمار ایران با رویکرد تحلیل و توسعه گزینههای استراتژیک (سودا). پژوهشهای مدیریت در ایران، سال نوزدهم، شماره 4، صص ۱-۲۰.
- میرعمادی، طاهره. رحیمی راد، زهره، 1396، آیندهپژوهی سیاستهای ایران در بیست سال آینده. معاونت برنامهریزی و نظارت راهبردی معاونت علمی و فناوری ریاست جمهوری.
- میرعمادی، طاهره. (1391). مدارهای توسعهنیافتگی و تأثیر آنها بر نظام ملی نوآوری در ایران. فصلنامه سیاست علم و فناوری، 5(1), 17-30.
- Avelino, F., & Rotmans, J. (2009). Power in transition: an interdisciplinary framework to study power in relation to structural change. European journal of social theory, 12(4), 543-569.
- Baltar, F., & Brunet, I. (2012). Social research 2.0: virtual snowball sampling method using Facebook. Internet Research, 22(1), 57-74.
- Bergek, A., Hekkert, M., Jacobsson, S., Markard, J., Sandén, B., & Truffer, B. (2015). Technological innovation systems in contexts: Conceptualizing contextual structures and interaction dynamics. Environmental Innovation and Societal Transitions, 16, 51-64.
- Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative research in psychology, 3(2), 77-101.
- Cavalli-Sforza, V., & Ortolano, L. (1984). Delphi forecasts of land use: Transportation interactions. Journal of Transportation Engineering, 110(3), 324-339.
- Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European journal of operational research, 142(1), 174-186.
- Coenen, L., & López, F. (2010). Comparing systems approaches to innovation and technological change for sustainable and competitive economies: an explorative study into conceptual commonalities, differences and complementarities. Journal of Cleaner Production, 18(12), 1149-1160.
- Edquist, C., 2004. Reflections on the systems of innovation approach. Science and public policy, 31(6), pp.485-489.
- Edsand, H. E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society, 49, 1-15.
- EIA, U. (2013). Annual energy outlook 2013. US Energy Information Administration, Washington, DC, 60-62.
- Farla, J., Markard, J., Raven, R., & Coenen, L. (2012). Sustainability transitions in the making: A closer look at actors, strategies and resources. Technological forecasting and social change, 79(6), 991-998.
- Geels, F. (2014). Regime resistance against low-carbon transitions: Introducing politics and power into the multi-level perspective. Theory, Culture & Society, 31(5), 21-40.
- Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research policy, 31(8-9), 1257-1274.
- Geels, F. W. (2005). The dynamics of transitions in socio-technical systems: a multi-level analysis of the transition pathway from horse-drawn carriages to automobiles (1860–1930). Technology analysis & strategic
- Geels, F. W., & Schot, J. (2010). The dynamics of transitions: a socio-technical perspective.
- Geels, F. W., Hekkert, M. P., & Jacobsson, S. (2008). The dynamics of sustainable innovation journeys.
- Geels, F., & Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36(3), 399–417.
- Grin, J. (2010). Understanding transitions from a governance perspective. Transitions to sustainable development: New directions in the study of long term transformative change, 221-319.
- Guba, E. G., & Lincoln, Y. S. (1994). Competing paradigms in qualitative research. Handbook of qualitative research, 2(163-194), 105.
- Hafeznia, H., Aslani, A., Anwar, S., & Yousefjamali, M. (2017). Analysis of the effectiveness of national renewable energy policies: A case of photovoltaic policies. Renewable and Sustainable Energy Reviews, 79, 669-680.
- Hekkert, M. P., Suurs, R. A., Negro, S. O., Kuhlmann, S., & Smits, R. E. (2007). Functions of innovation systems: A new approach for analysing technological change. Technological forecasting and social change, 74(4), 413-432.
- Hess, D. J. (2016). The politics of niche-regime conflicts: distributed solar energy in the United States. Environmental Innovation and Societal Transitions, 19, 42-50.
- Hoppmann, J., Huenteler, J., & Girod, B. (2014). Compulsive policy-making—the evolution of the German feed-in tariff system for solar photovoltaic power. Research policy, 43(8), 1422-1441.
- Hsu, T. H., & Yang, T. H. (2000). Application of fuzzy analytic hierarchy process in the selection of advertising media. Journal of Management and Systems, 7(1), 19-39.
- Iizuka, M. (2015). Diverse and uneven pathways towards transition to low carbon development: the case of solar PV technology in China. Innovation and Development, 5(2), 241-261.
- Ishikawa, A. (1993, January). The new fuzzy Delphi methods: economization of GDS (group decision support). In System Sciences, 1993, Proceeding of the Twenty-Sixth Hawaii International Conference on (Vol. 4, pp. 255-264). IEEE.
- Jacobsson, S., & Johnson, A. (2000). The diffusion of renewable energy technology: an analytical framework and key issues for research. Energy Policy, 28(9), 625–940.
- Kemp, R., Schot, J., & Hoogma, R. (1998). Regime shifts to sustainability through processes of niche formation: the approach of strategic niche management. Technology analysis & strategic management, 10(2), 175-198.
- Kern, F. (2011). Ideas, institutions, and interests: explaining policy divergence in fostering ‘system innovations’ towards sustainability. Environment and Planning C: Government and Policy, 29(6), 1116-1134.
- Levy, D. L., & Newell, P. J. (2002). Business strategy and international environmental governance: Toward a neo-Gramscian synthesis. Global Environmental Politics, 2(4), 84-101.
- Loorbach, D. (2010). Transition management for sustainable development: a prescriptive, complexity‐based governance framework. Governance, 23(1), 161-183.
- Markard, J., & Truffer, B. (2008). Technological innovation systems and the multi-level perspective: Towards an integrated framework. Research policy, 37(4), 596-615.
- Murray, T. J., Pipino, L. L., & van Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80.
- Nasiri, M., Khorshid-Doust, R. R., & Moghaddam, N. B. (2013). Effects of under-development and oil-dependency of countries on the formation of renewable energy technologies: A comparative study of hydrogen and fuel cell technology development in Iran and the Netherlands. Energy policy, 63, 588-598.
- Negro, S. O., Alkemade, F., & Hekkert, M. P. (2012). Why does renewable energy diffuse so slowly? A review of innovation system problems. Renewable and Sustainable Energy Reviews, 16(6), 3836-3846.
- Nejat, P., Morsoni, A. K., Jomehzadeh, F., Behzad, H., Vesali, M. S., & Majid, M. A. (2013). Iran's achievements in renewable energy during fourth development program in comparison with global trend. Renewable and Sustainable Energy Reviews, 22, 561-570.
- Phillips, R. (2000). New applications for the Delphi technique. ANNUAL-SAN DIEGO-PFEIFFER AND COMPANY, 2, 191-196.
- Radosevic, S. (1998). Defining systems of innovation: a methodological discussion. Technology in Society, 20(1), 75-86.
- Ratinen, M., & Lund, P. D. (2017). When regime changes slow down niche development: the example of wind energy business in Finland. International Journal of Research, Innovation and Commercialisation, 1(1), 41-56.
- Raven, R. P. J. M., & Geels, F. W. (2010). Socio-cognitive evolution in niche development: Comparative analysis of biogas development in Denmark and the Netherlands (1973–2004). Technovation, 30(2), 87-99.
- Rip, A., & Kemp, R. (1998). Technological change. Human choice and climate change, 2, 327-399.
- Rotmans, J., Kemp, R., & Van Asselt, M. (2001). More evolution than revolution: transition management in public policy. Foresight, 3(1), 15-31.
- Smith, A. (2007). Translating sustainabilities between green niches and socio-technical regimes. Technology analysis & strategic management, 19(4), 427-450.
- Smith, A., Stirling, A., & Berkhout, F. (2005). The governance of sustainable socio-technical transitions. Research policy, 34(10), 1491-1510.
- Smith, A., Voß, J. P., & Grin, J. (2010). Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Research policy, 39(4), 435-448.
- Carlsson, B., & Stankiewicz, R. (1991). On the nature, function and composition of technological systems. Journal of evolutionary economics, 1(2), 93-118.
- Suurs, R. A. (2009). Motors of sustainable innovation: Towards a theory on the dynamics of technological innovation systems. Utrecht University.
- Suurs, R. A., & Hekkert, M. P. (2009). Cumulative causation in the formation of a technological innovation system: The case of biofuels in the Netherlands. Technological Forecasting and Social Change, 76(8), 1003-1020.
- Voss, J., Smith, A., & Grin, J. (2009). Designing long-term policy: rethinking transition management. Policy sciences, 42(4), 275-302.
- Walrave, B., & Raven, R. (2016). Modelling the dynamics of technological innovation systems. Research Policy, 45(9), 1833-1844.
- Walz, R., Köhler, J. H., & Lerch, C. (2016). Towards modelling of innovation systems: An integrated TIS-MLP approach for wind turbines (No. 50). Fraunhofer ISI Discussion Papers Innovation Systems and Policy Analysis.
- Wieczorek, A. J. (2017). Sustainability transitions in developing countries: Major insights and their implications for research and policy. Environmental Science & Policy, 84, 204-216.
- Zhang, S., Andrews-Speed, P., & Ji, M. (2014). The erratic path of the low-carbon transition in China: Evolution of solar PV policy. Energy Policy, 67, 903-912.
- Zimmerman, M. A., & Zeitz, G. J. (2002). Beyond survival: Achieving new venture growth by building legitimacy. Academy of management review, 27(3), 414-431.