کاربرد شبکه های عصبی مصنوعی در پیش بینی شاخص های کلان علم و فناوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مدیریت صنعتی - زیرگروه مدیریت فناوری اطلاعات دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی

2 دانشجوی کارشناسی ارشد مدیریت فناوری اطلاعات،دانشکده مدیریت و حسابداری دانشگاه علامه طباطبایی،تهران،ایران

چکیده

ارزیابی تحقیق و توسعه و ارتباط بین تولید علم و تکنولوژی در سطح کلان کشورها به دلیل حجم بالای اطلاعات و تغییر و تحولات سریع در این حوزه محدود بوده است. این پژوهش با هدف درک ارتباط و عملکرد توسعه فناوری در رابطه با فعالیت‌های تولید علم در سطح کشور‌ها صورت پذیرفته است که از نوع تحقیقات توصیفی-کاربردی می‌باشد. هدف ساخت مدلی با استفاده از الگوریتم‌ های پیشرفته است که توانایی پیش‌بینی شاخص فناوری را بر مبنای تولید علم در کشورها داشته باشد. همچنین، تاثیر هر یک از شاخص‌های علمی بر شاخص فناوری با استفاده از روش آنالیز حساسیت شبکه عصبی تعیین گردید. روش تحقیق دراین پژوهش CRISP-DM بوده و داده‌ها از پایگاه SJCRو سازمان جهانی مالکیت فکری (WIPO) و در بازه زمانی سال‌های 2001 تا 2015 استخراج گردید. طبق نتایج تحقیق، شبکه‌ عصبی نسبت به رگرسیون از دقت و توانایی بیشتری جهت مدل‌سازی برخوردار بود و نتایج تحلیل حساسیت نشان داد که مهم‌ترین پارامتر علم‌سنجی جهت پیش‌بینی شاخص فناوری پارامتر اچ‌ایندکس و روند ارجاع‌دهی به مقالات‌‌ بین‌المللی می‌باشد. سیاست-گذاران می‌توانند از نتایج پژوهش جهت شناسایی متغیرهای تاثیرگذار تولید علم که به ایجاد فناوری منجر می‌شوند بهره گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Artificial Neural Networks in Predicting Macro Indicators of Science and Technology

نویسندگان [English]

  • Iman Raeesi Vanani 1
  • naeima mirzamomen 2
1 Department of Information Technology Management, Allameh Tabataba'i University
2 M.Sc. Student of information technology management, Allameh Tabataba'i University, Tehran,Iran.
چکیده [English]

The R&D evaluation and the relation between the production of science and technology at the macro level of the countries have been limited due to the high volume of information and rapid rate of changes in this area. This research is aimed at understanding the relationship and performance of technology development in relation to science production activities across countries, which is a descriptive-applied research type. The goal of this study is to build a model using advanced algorithms that can predict the scientometric indicators based on the production of science in countries. Also, the effect of each of the scientometric indicators on the technology index was determined using the sensitivity analysis method of the neural network. The research method is CRISP-DM and the data were extracted from the SCImago Journal & Country Rank SJCR data base and the World Intellectual Property Organization (WIPO) during the time period from 2001 to 2015. According to the results, neural network has more accuracy and ability to model than the regression. The results of the sensitivity analysis showed that the most important parameter for scientometric indicators is H-index and the process of referring to the international papers. Policy makers can use the research results to identify the influential variables of science production that lead to the creation of technology

کلیدواژه‌ها [English]

  • Scientometric Indicator
  • Artificial neural network
  • Sensitivity analysis
  • Data Mining
بهرامی، م. (1374). تکنولوژی‌های آینده، شناسایی و پیش بینی. تهران: انتشارات خضرا.
خلیل، ط. (1381). مدیریت تکنولوژی، رمز موفقیت در رقابت و خلق ثروت. (س. باقری، مترجم) انتشارات پیام متن وابسته به مرکز تکنولوژی نیرو.
ذوالفقار نسب، س. (1383). تاریخچه ارزیابی علم و فناوری و ظهور شاخص‌های علمی با تأکید بر کشور آمریکا. هیئت نظارت و ارزیابی فرهنگی و علمی.
سلطانی نژاد، ع. (1393). تحلیل رابطه میان تولیدات علمی کشورهای برتر جهان و میزان اختراعات ثبت شده در پایگاه استنادی اسکوپوس طی سال‌های 2008-2013. پایان‌نامه کارشناسی ارشد رشته علم اطلاعات و دانش شناسی، دانشکده ادبیات و علوم انسانی دانشگاه شهید باهنر کرمان.
گودرزی، م. (1382). بررسی وضعیت نظام مالکیت فکری ایران و ارائه راهکارهای بهبود آن در جهت توسعه تکنولوژیکی کشور. تهران: پایان‌نامه کارشناسی ارشد رشته مدیریت تکنولوژی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی.
منهاج، م. (1384). مبانی شبکه‌های عصبی. تهران: دانشگاه صنعتی امیرکبیر.
نقی پور، پ. (1385). اولویت‌بندی کشورها جهت ثبت پتنت ها در رابطه با تکنولوژی. تهران: پایان‌نامه کارشناسی ارشد، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی.
نواز شریف، م. (1367). مدیریت انتقال تکنولوژی و توسعه، ترجمه رشید اصلانی. تهران: سازمان برنامه‌وبودجه.
 
Aksnes, ., Sivertesen, ., Leeuwen, ., & Wendt, K. (2017). Measuring the productivity of national R&D systems: Challenges in cross-national comparisons of R&D input and publication output indicators. Science and Public Policy, 44(2), 246–258.
Anegón, F. & Solana, V. (2013). Worldwide Topology of the Scientific Subject Profile: A Macro Approach in the Country Level. PLOS ONE, 8(12).
Baykal, N. (2012). Predicting the disease of Alzheimer CAD with SNP biomarkers and clinical data based decision support system using data mining classification approachs. Middle East Technical university.
Choi, J. Jang, D. Jun, S. & Park, S. (2015). A Predictive Model of Technology Transfer Using Patent Analysis. Sustainability, 16175–16195.
De, R. Pal, N. & Pal, S. (1997). Feature analysis: neural network and fuzzy set theoretic approaches. Pattern recognition, 30(10), 1579-1590.
European commission. (2011). Retrieved from European commission.
Filzmoser, P. (2008). Linear and nonlinear methods for regression and classification and applications in R. Wien: Wiedner Hauptstr.
Glänzel, W. Moed, H. Schmoch, U. & Thelwall, M. (2018). Springer Handbook of Science and Technology Indicators. Springer.
Hadzima-Nyarko, M. Nyarko, E. & Moric, D. (2011). A neural network based modelling and sensitivity analysis of damage ratio coefficient. Expert systems with applications, 13405-13413.
Han, J. Kamber, M. & Pei, J. (2011). Data Mining: Concepts and Techniques (3rd ed). Morgan Kaufmann Publishers.
Hashem, S. (1992). Sensitivity analysis for feedforward artificial neural networks with differentiable activation functions. Proceedings of the 1992 international joint conferences on neural networks, Baltimore, MD (Vol. 1, pp. 419–424). IEEE Press.
Idris, K. (2002). Intellectual Property, A power tool for economic growth. WIPO publication.
Jang, H. & Kim, H. (2014). Research output of science, technology and bioscience publications in Asia. Science editing, 1(2), 62-70.
Madaleno, M. Moutinho, V. & Robaina, M. (2016). Economic and environmental assessment: EU cross-country efficiency ranking analysis. energy procedia, 106, 134-154.
Molas, G. & Yamazaki, F. (1995). Neural networks for quick earthquake damage estimation. Earthquake Engineering and Structural Dynamics, 24, 505–516.
Narin, F. Hamilton, K. & Olivastro, D. (1997). The increasing linkage between U.S technology and public science. Research Policy, 26, 317-330.
Okubo, Y. (1997). Bibliometric Indicators and Analysis of Research Systems: Methods and Examples. OECD Science, Technology and Industry Working Papers.
Pal, N. (1999). Soft computing for feature analysis. Fuzzy sets and systems, 103, 201-221.
Porter, A. Roper, A. Manson, T. Rossini, F. Banks, J. & Wiederhdt, B. (1991). Forecasting and management of technology. USA: Wiley.
Radicchi, F. & Castellano, C. (2013). Analysis of bibliometric indicators for individual scholars in a large data set. Scientometrics. doi: 10.1007/s11192-013-1027-3
Sandoval-Romero, V. Mongeon, P. & Lariviere, V. (2018). Science, technology and innovation indicarors in transition. International conference on science and technology indicators. Leiden, The Netherlands.
sarle, W. (2000). How to measure importance of inputs? Retrieved from <ftp://ftp.sas.com/pub/ neural/importance.html>
science-metrix. (2010). 30 years in science: Secular movements in knowledge creation. Retrieved from science-metrix: http://www.science-metrix.com/30years-Paper.pdf
SCImago. (2007, July 21). http://www.scimagojr.com. Retrieved from SJR — SCImago Journal & Country Rank.
Sirilli, G. (1999). Innovation indicators in science and technology evaluation. Scientometrics, 45, 439-443.
Sohn, Y. & Moon, T. (2004). Decision Tree based on data envelopment analysis for effective technology commercialization. Expert Systems with Applications, 26, 279–284.
Sugimoto, C. & Lariviere, V. (2018). Meassuring Research. What Everyone Needs to Know. New York: Oxford University Press.
Tan, P.N. Steinbach, M. & Kumar, V. (2006). Introduction to Data Mining. Pearson.
Twiss, B. (1992). Forecasting for technologist and engineers.
VILIMEK, M. (2014). An artificial neural network approach and sensitivity analysis in predicting skeletal muscle forces. Acta of Bioengineering and Biomechanics, 16. doi: 10.5277/abb140314
Zainab, T. & Ashraf Wani, Z. (2018). Advancement and Application of Scientometric Indicators for Evaluation of Research Content. IGI Global.