شناسایی و اولویت‌بندی فناوری‌های خرده‌فروشی هوشمند مبتنی بر ویژگی‌های فناوری و قابلیت‌های سازمانی (مورد مطالعه فروشگاه‌های زنجیره‌ای رفاه)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مدیریت بازاریابی، دانشگاه شیراز، شیراز.

2 عضو هیئت‌علمی، دانشکده اقتصاد، مدیریت و علوم اجتماعی، دانشگاه شیراز، شیراز.

چکیده

با­توجه ­به توسعه خرده‌فروشی‌های هوشمند در فضای کسب ­وکار، دستیابی خرده‌فروشی‌ها به فناوری‌های هوشمند اجتناب‌ناپذیر به ­نظر می‌رسد و در‌این‌راستا، انتخاب این فناوری‌ها در صنعت خرده‌فروشی تحت‌تأثیر ویژگی‌های فناوری و قابلیت‌های سازمانی است. این پژوهش به‌عنوان یک مطالعه آمیخته اکتشافی با هدف شناسایی فناوری‌های خرده‌فروشی هوشمند و همچنین الزامات و عوامل مؤثر بر انتخاب این فناوری‌ها در فروشگاه‌های زنجیره­ای رفاه شهر شیراز انجام شده‌است. در بخش اول این مطالعه، ازطریق مرور نظام‌مند پیشینه فناوری­های خرده­فروشی هوشمند و عوامل انتخاب آن‌ها مشخص شده و در ادامه با­تکیه‌بر نظر خبرگان، معیارهای انتخاب فناوری با تکنیک بهترین-بدترین وزن‌دهی شده است. درنهایت اولویت‌بندی فناوری‌های شناسایی‌شده مبتنی بر معیارهای مذکور و با به‌کارگیری تکنیک تاپسیس انجام گرفته و درنتیجه 26 معیار در هفت حوزه و 23 فناوری هوشمند شناسایی شده­ اند. براین‌اساس، توان تأمین اطلاعات برای مشتری، تأثیر در راحتی انتخاب مشتری، هزینه فناوری و برخورداری فروشگاه از زیرساخت‌های فناوری اطلاعات از مهم‌ترین عوامل انتخاب فناوری هوشمند بوده‌اند. همچنین فناوری‌‌های صفحه‌نمایش هوشمند، پایانه‌های تعاملی، برنامه‌های تلفن همراه، علائم دیجیتال و برچسب‌های الکترونیکی قفسه به‌عنوان بهترین گزینه‌ها برای هوشمندسازی فروشگاه‌های زنجیره‌ای رفاه شناسایی شدند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification and prioritizing smart retailing technologies based on technology characteristics and organizational capabilities (A case of Refah chain-stores)

نویسندگان [English]

  • Fatemeh Pourbahman 1
  • Kazem Askarifar 2
  • Mohammad Hossein Ronaghi 2
1 M.A. Student of Marketing Management, Shiraz University, Shiraz, Iran.
2 Faculty Member, Department of Economics, Management, and Social Sciences, Shiraz University, Shiraz, Iran.
چکیده [English]

Given the development of smart retail in the business environment, the acquisition of smart technologies by retailers seems inevitable, and in this regard, the choice of these technologies in the retail industry is influenced by the characteristics of technology and organizational capabilities. This research has been conducted with a mixed exploratory approach to identify intelligent retail technologies as well as the requirements and factors affecting the selection of these technologies in Refah chain stores in Shiraz. In the first part of this study, by a systematic review of the background, intelligent retail technologies and their selection factors were identified, and then, based on the opinion of experts, the technology selection criteria were weighted with the best-worst technique. Finally, the identified technologies are prioritized based on the mentioned criteria and using the TOPSIS technique, and as a result, 26 criteria (in 7 areas) and 23 intelligent technologies were identified. Therefore, the ability to provide information to the customer, the impact on the convenience of customer selection, technology costs, and the IT infrastructure of the stores have been presented as the most important factors in choosing smart technologies. Also, smart display technologies, interactive information terminals, mobile applications, digital signage, and electronic shelf labels were identified as the best options for smartening Refah Chain Stores.

کلیدواژه‌ها [English]

  • Smart Technology
  • Technology Selection
  • Retailing
  • Chain Stores
  • Best-Worst Method (BWM)
-          Adapa, S., Fazal-e-Hasan, S. M., Makam, S. B., Azeem, M. M., & Mortimer, G. (2020). Examining the antecedents and consequences of perceived shopping value through smart retail technology. Journal of Retailing and Consumer Services52, 101901. https://doi.org/10.1016/j.jretconser.2019.101901
-          Bertacchini, F., Bilotta, E., & Pantano, P. (2017). Shopping with a robotic companion. Computers in Human Behavior77, 382-395. ‏ https://doi.org/10.1016/j.chb.2017.02.064
-          Bradlow, E.T., Gangwar, M. Kopalle, P., & Voleti, S. (2017). The role of big data and predictive analytics in retailing. Journal of Retailing, 93(1), 79-95. https://doi.org/10.1016/j.jretai.2016.12.004
-          Bulmers, S., Elms, J., & Moore, S. (2018). Exploring the adoption of self-service checkouts and the associated social obligations of shopping practices. Journal of Retailing and Consumer Services42, 107-116. https://doi.org/10.1016/j.jretconser.2018.01.016
-          Clodfelter, R. (2010). Biometric technology in retailing: Will consumers accept fingerprint authentication? Journal of Retailing and Consumer Services17(3), 181-188.  https://doi.org/10.1016/j.jretconser.2010.03.007
-          Dacko, S.G. (2017). Enabling smart retail settings via mobile augmented reality shopping apps. Technological Forecasting and Social Change124, 243-256.   https://doi.org/10.1016/j.techfore.2016.09.032
-          Fazal-e-Hasan, S.M., Amrollahi, A., Mortimer, G., Adapa, S., & Makam, S.B. (2020). A multi-method approach to examining consumer intentions to use smart retail technology. Computers in Human Behavior, 106622. https://doi.org/10.1016/j.chb.2020.106622
-          Feiz, D., Zarei, A., Maleki Minbashrazgah, M., & Shaabani Naeim Soufyani, A. (2019). The role of gamification as a growth hacking strategy in the adoption disruptive innovation model in mobile payment applications (Case study: Students of Guilan University) [In Persian]. Journal of Technology Development Management, 7(3), 63-90. https://doi.org/10.22104/JTDM.2019.3187.2103
-          Fernandez-Anez, V., Fernández-Güell, J.M., & Giffinger, R. (2018). Smart City implementation and discourses: An integrated conceptual model. The case of Vienna. Cities78, 4-16. https://doi.org/10.1016/j.cities.2017.12.004
-          Ferracuti, N., Norscini, C., Frontoni, E., Gabellini, P., Paolanti, M., & Placidi, V. (2019). A business application of RTLS technology in intelligent retail environment: Defining the shopper's preferred path and its segmentation. Journal of Retailing and Consumer Services47, 184-194. https://doi.org/10.1016/j.jretconser.2018.11.005
-          Foroudi, P., Gupta, S., Sivarajah, U., & Broderick, A. (2018). Investigating the effects of smart technology on customer dynamics and customer experience. Computers in Human Behavior80, 271-282. ‏ https://doi.org/10.1016/j.chb.2017.11.014
-          Garaus, M., Wolfsteiner, E., & Wagner, U. (2016). Shoppers' acceptance and perceptions of electronic shelf labels. Journal of Business Research69(9), 3687-3692. https://doi.org/10.1016/j.jbusres.2016.03.030
-          Garcia, S.J., Álvarez, C.A.A., Gómez, J.M.C., & Toro, J.J.A. (2017). Measuring of organizational capabilities for technological innovation through a fuzzy inference system. Technology in Society, 50, 93-109.https://doi.org/10.1016/j.techsoc.2017.05.005
-          Gretzel, U., Sigala, M., Xiang, Z., & Koo, C. (2015). Smart tourism: Foundations and developments. Electronic Markets25(3), 179-188. https://doi.org/10.1007/s12525-015-0196-8
-          Grewal, D., Noble, S.M., Roggeveen, A.L., & Nordfalt, J. (2020). The future of in-store technology. Journal of the Academy of Marketing Science48(1), 96-113. https://doi.org/10.1007/s11747-019-00697-z
-          Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: Exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications36(6), 1531-1539. https://doi.org/10.1016/j.jnca.2012.12.028
-          Haque, M.M., Chin, H.C., & Debnath, A.K. (2013). Sustainable, safe, smart—three key elements of Singapore’s evolving transport policies. Transport Policy27, 20-31.  https://doi.org/10.1016/j.tranpol.2012.11.017
-          Inman, J. J., & Nikolova, H. (2017). Shopper-facing retail technology: A retailer adoption decision framework incorporating shopper attitudes and privacy concerns. Journal of Retailing93(1), 7-28. https://doi.org/10.1016/j.jretai.2016.12.006
-          Joukar, A.A., & Nasirzonouzi, A. (2013). Understanding the determinants of RFID adoption in IRAN case study: Automotive manufacturing industry [In Persian]. Journal of in Industrial Mamagement Perspective, 2(8), 117-142. https://jimp.sbu.ac.ir/article_87331.html?lang=en
-          Kallweit, K., Spreer, P., & Toporowski, W. (2014). Why do customers use self-service information technologies in retail? The mediating effect of perceived service quality. Journal of retailing and consumer services21(3), 268-276.  https://doi.org/10.1016/j.jretconser.2014.02.002
-          Kang, J.Y.M., Mun, J.M., & Johnson, K.K. (2015). In-store mobile usage: Downloading and usage intention toward mobile location-based retail apps. Computers in Human Behavior46, 210-217. https://doi.org/10.1016/j.chb.2015.01.012  
-          Khodayari, M., Nilforoushan, H., & Haji Heydari, N. (2020). Pathology of technology intelligence business models in Iran [In Persian]. Journal of Technology Development Management, 7(4), 97-126.https://doi.org/10.22104/JTDM.2020.3893.2366
-          Kim, H. Y., Lee, J.Y., Mun, J.M., & Johnson, K.K. (2017). Consumer adoption of smart in-store technology: Assessing the predictive value of attitude versus beliefs in the technology acceptance model. International Journal of Fashion Design, Technology and Education10(1), 26-36. https://doi.org/10.1080/17543266.2016.1177737
-          Kukka, H., Luusua, A., Ylipulli, J., Suopajärvi, T., Kostakos, V., & Ojala, T. (2014). From cyberpunk to calm urban computing: Exploring the role of technology in the future cityscape. Technological Forecasting and Social Change84, 29-42. https://doi.org/10.1016/j.techfore.2013.07.015  
-          Pantano, E. (2016). Benefits and risks associated with time choice of innovating in retail settings. International Journal of Retail & Distribution Management, 44(1), 58-70. https://doi.org/10.1108/IJRDM-03-2015-0047
-          Pantano, E., & Naccarato, G. (2010). Entertainment in retailing: The influences of advanced technologies. Journal of Retailing and Consumer Services17(3), 200-204. https://doi.org/10.1016/j.jretconser.2010.03.010
-          Pantano, E., & Timmermans, H. (2014). What is smart for retailing? Procedia Environmental Sciences22, 101-107. https://doi.org/10.1016/j.proenv.2014.11.010
-          Pantano, E., & Vannucci, V. (2019). Who is innovating? An exploratory research of digital technologies diffusion in retail industry. Journal of Retailing and Consumer Services49, 297-304. https://doi.org/10.1016/j.jretconser.2019.01.019
-          Pantano, E., & Viassone, M. (2014). Demand pull and technology push perspective in technology-based innovations for the points of sale: The retailer’s evaluation. Journal of Retailing and Consumer Services21(1), 43-47. https://doi.org/10.1016/j.jretconser.2013.06.007
-          Pantano, E., & Viassone, M. (2015). Engaging consumers on new integrated multichannel retail settings: Challenges for retailers. Journal of Retailing and Consumer Services25, 106-114. ‏ https://doi.org/10.1016/j.jretconser.2015.04.003
-          Pantano, E., Passavanti, R., Priporas, C.V., & Verteramo, S. (2018). To what extent luxury retailing can be smart? Journal of Retailing and Consumer Services43, 94-100.  https://doi.org/10.1016/j.jretconser.2018.03.012
-          Pantano, E., Priporas, C.V., Sorace, S., & Iazzolino, G. (2017). Does innovation-orientation lead to retail industry growth? Empirical evidence from patent analysis. Journal of Retailing and Consumer Services, 34, 88-94. ‏ https://doi.org/10.1016/j.jretconser.2016.10.001
-          Perry, A. (2016). Consumers' acceptance of smart virtual closets. Journal of Retailing and Consumer Services33, 171-177. https://doi.org/10.1016/j.jretconser.2016.08.018
-          Priporas, C.V., Stylos, N., & Fotiadis, A.K. (2017). Generation Z consumers' expectations of interactions in smart retailing: A future agenda. Computers in Human Behavior77, 374-381. https://doi.org/10.1016/j.chb.2017.01.058
-          Renko, S., & Druzijanic, M. (2014). Perceived usefulness of innovative technology in retailing: Consumers׳ and retailers׳ point of view. Journal of retailing and consumer services21(5), 836-843. https://doi.org/10.1016/j.jretconser.2014.02.015
-          Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. https://doi.org/10.1016/j.omega.2014.11.009
-          Rogers, E.M. (2017). Diffusion of Innovations. 4th Ed., Simon and Schuster.
-          Roy, S.K., Balaji, M.S., & Nguyen, B. (2020). Consumer-computer interaction and in-store smart technology (IST) in the retail industry: The role of motivation, opportunity, and ability. Journal of Marketing Management36(3-4), 299-333. https://doi.org/10.1080/0267257X.2020.1736130
-          Roy, S.K., Balaji, M.S., Quazi, A., & Quaddus, M. (2018). Predictors of customer acceptance of and resistance to smart technologies in the retail sector. Journal of Retailing and Consumer Services42, 147-160. https://doi.org/10.1016/j.jretconser.2018.02.005
-          Roy, S.K., Balaji, M.S., Sadeque, S., Nguyen, B., & Melewar, T.C. (2017). Constituents and consequences of smart customer experience in retailing. Technological Forecasting and Social Change124, 257-270. https://doi.org/10.1016/j.techfore.2016.09.022
-          Sandelowski, M., & Barroso, J. (2006). Handbook for synthesizing qualitative research. Springer publishing company.
-          Shankar, V., Kalyanam, K., Setia, P., Golmohammadi, A., Tirunillai, S., Douglass, T., & Waddoups, R. (2021). How technology is changing retail. Journal of Retailing, In Press, https://doi.org/10.1016/j.jretai.2020.10.006
-          Tsai, M. C., Lee, W., & Wu, H. C. (2010). Determinants of RFID adoption intention: Evidence from Taiwanese retail chains. Information & Management47(5-6), 255-261.  https://doi.org/10.1016/j.im.2010.05.001
-          Vrontis, D., Thrassou, A., & Amirkhanpour, M. (2017). B2C smart retailing: A consumer-focused value-based analysis of interactions and synergies. Technological Forecasting and Social Change124, 271-282. https://doi.org/10.1016/j.techfore.2016.10.064
-          Willems, K., Smolders, A., Brengman, M., Luyten, K., & Schöning, J. (2017). The path-to-purchase is paved with digital opportunities: An inventory of shopper-oriented retail technologies. Technological Forecasting and Social Change124, 228-242.  https://doi.org/10.1016/j.techfore.2016.10.066  
-          Wünderlich, N.V., Heinonen, K., Ostrom, A.L., Patricio, L., Sousa, R., Voss, C., & Lemmink, J.G. (2015). “Futurizing” smart service: implications for service researchers and managers. Journal of Services Marketing29(6/7), 442-447. https://doi.org/10.1108/JSM-01-2015-0040
-          Zhitomirsky-Geffet, M., & Blau, M. (2016). Cross-generational analysis of predictive factors of addictive behavior in smartphone usage. Computers in Human Behavior64, 682-693. https://doi.org/10.1016/j.chb.2016.07.061